A Countywide Program to Manage Concussions in High School Sports

Submitted by Gillian Hotz Ph.D, Ashlee Quintero, BSc, Ray Crittenden, MSc, Lauren Baker, David Goldstein and Kester Nedd, DO

ABSTRACT
Background: With the national spotlight on concussions sustained in contact sports, this Countywide Concussion Program addresses the unique challenges presented to public and private high schools in order to increase concussion awareness, identification, and management.

Methods: The Miami Concussion Model (MCM) was developed with a standard protocol that includes; formation of a task force of stakeholders, concussion education and training to coaches, athletic trainers, and athletes; baseline ImPACT™ testing, the facilitation of ‘return to play’ decisions with effective medical treatment, and the development and implementation of a concussion injury surveillance system.

Results: The program has been successfully implemented in about 40 high schools in Miami-Dade County (MDC) over the last two years. The MCM provided baseline testing for 18,357 student-athletes, trained over 100 coaches and 40 athletic trainers, and most recently provided concussion education to high school football athletes. Since 2011, the concussion clinic has treated a total of 216 high school athletes and the surveillance system tracked 198 student athletes.

Conclusion: The MCM aims to assist in the prevention of concussions, improve player safety limiting school liability by providing a countywide concussion management program. The program is funded primarily by private donations and the support of multiple stakeholders. With about 48 States passing concussion legislation, the MCM can be used as a model for other counties to address the need for a concussion management program.

Applications in Sport: Schools with athletic programs need to implement a system to correctly manage and prevent concussive injuries both to protect their athletes and to minimize liability. The development of the MCM and protocol with the support of the leadership of the School Board allows for high schools to take a proactive approach in improving concussion management for their athletes.

INTRODUCTION
With the national spotlight on concussions in sports, key stakeholders worked together to develop a concussion model, a standard countywide concussion care protocol, and a surveillance system to improve concussion management and to reduce the incidence of sports¬-related concussions at the high school level. In 2011, a student-¬athlete who had sustained multiple concussions playing soccer spearheaded the initiative to create a taskforce to address the management of concussions. A taskforce was implemented consisting of physicians, community leaders, school officials, and concerned parents. The combination of these stakeholders’ backgrounds created a diverse team with unique resources to create a program utilizing a public health approach toward preventing concussions. The Miami Concussion Model (MCM) was designed as a 3-E model (Education, Execution, and Evaluation) outlining phases for program development, implementation, and evaluation (Figure 1).

Figure 1
Screen Shot 2014-03-07 at 9.08.11 AM

The program has been successfully implemented in 40 high schools in Miami-Dade County (MDC), baseline testing 18,357 student-athletes over two years. The goals of the MCM are to provide a comprehensive and centralized concussion care program to 1) increase concussion awareness and identification through education and training; 2) facilitate the return to play decision with effective medical treatment which includes baseline neurocognitive testing; and 3) implement a standardized concussion care protocol and concussion injury surveillance system to assist in the prevention of concussions, improve player safety, and limit school liability.

Traumatic brain injury (TBI) is the leading cause of injury¬-related death in children and young adults in the United States and other industrialized countries. A concussion is a type of brain injury caused by a bump or blow to the head that alters cognitive functioning. The Center for Disease Control and Prevention (CDC) has estimated annual sports¬ related concussion incidence is between 1.6 and 3.8 million (Centers for Disease Control, 2010; Coronado et al., 2011; Leibson et al., 2011). Sports is the second leading cause for TBIs after motor vehicle accidents among people aged 15 to 24 years old (Nanda et al., 2012). Studies demonstrate short and long term effects of concussions can be serious and occasionally fatal (Daneshvar et al, 2011; Iverson et al., 2006; Lovell et al, 2003). Most recent public concern has focused on the relationship between Chronic Traumatic Encephalopathy (CTE), a progressive degenerative disease of the brain found in an athlete’s brain post-¬mortem, with a history of multiple symptomatic concussions as well as asymptomatic, repeated sub¬-concussive hits to the head (McKee et al., 2009). As a result of high-profile athletes reporting injuries there has been increased media attention emphasizing the effects of mild traumatic brain injury and concussions in athletes. Beginning in 2009, 48 states nationwide have passed youth sports concussion legislation that requires athletes to be immediately removed from play if a head injury is suspected and then cleared by a licensed medical professional before returning to sport after a head injury.

METHODS
In order to prevent and reduce the consequences of injuries, the CDC recommends the public health approach; describing the problem, identifying the risk and protective factors, developing and testing preventative interventions and strategies, and ensuring widespread adoption of the interventions and strategies (Sleet et al., 2003). This model was used to develop the MCM, a 3E model that includes components of Education, Execution, and Evaluation. The model and the protocol presented in this paper are now being implemented across the county.

Education
The issue of sports related concussions was identified within the MDC community by the University of Miami Concussion Program (UMCP) obtaining accurate injury rates. The number of affected individuals was calculated based on the participation in contact sports in the community. In M¬DC there are 36 public high schools with approximately 15,000 students participating in interscholastic sports annually. M¬DC public high schools had an enrollment of 102,582 students for the 2011¬ and 2012 school years; therefore 14.6% of public high school students in MDC participated in sports and were affected/at risk for sports¬ related concussions. This excluded the students that participated in physical education courses who were also at risk (Miami-¬Dade Public Schools Research Services [M-DPSRS], 2011). As perceptions regarding concussion started to change in the county and awareness increased due to media attention, M¬DC school officials became open to discussion to improve their concussion management plan. This allowed for meetings with key personnel involved with high school athletes (athletic directors, coaches, athletic trainers, physical education teachers, etc.). These meetings were very important in that they revealed their knowledge and their experience with sports concussions and their thoughts of how to improve management for their athletes.

Review of existing sports concussion management protocols and resources in the community was conducted to 1) determine if any current concussion management programs or plans existed, 2) obtain information from local emergency rooms and physicians’ offices relevant to concussion planning, and 3) identify how those individuals managed concussion in youth sports and where they were referring their patients for specialized follow-¬up care. That information taken from multiple sources (leagues, parks, schools, state laws, and local medical care centers) was summarized regarding the issue of sports concussions within the community. For example, most high school aged (13-19 years) students in the community participated in interscholastic sports versus park recreational leagues; the majority of injuries occur between the months of August and January during football season because football teams have the largest number of athletes. Being well informed on the issues of concussion management allowed a focused approach toward building a concussion care program for the community via the MCM.

The UMCP was then able to identify the weaknesses in each phase of concussion management and propose resolutions to strengthen each area. A community task force was developed that consisted of key stakeholders from different agencies involved in concussion management. This included school board representatives, first responders to the injury, medical providers, and community leaders.

Most recently UMCP has partnered with the Sports Legacy Institute and joined their community education program through their Sports Legacy Institute Community Educator Program (SLICE). SLICE is a fun, interactive concussion education program that teaches young student-athletes about concussions through discussion, video, and interactive games (Sports Legacy Institute [SLI], 2013). Currently, a modified version of SLICE, which is a 30-minute power point presentation, is being used to educate high school football players.

Support and approval for concussion planning was obtained from the various constituencies for the community task force and was followed up with research of each district, county, and state policy pertaining to sports concussions for high school athletes. Verification of regulations was implemented and continuously updated to allow consistency with the newest management protocols as outlined in the Consensus Statement from the International Committee on Sports Concussions (McCrory et al., 2008). Legislation has passed in 48 states across the country requiring student athletes to receive written medical clearance before returning to the playing field. These state laws include the requirement that athletes, parents, and coaches receive concussion education. Prior to 2011 limited regulations existed in the MDC community, so the UMCP collaborated with school board officials to formulate a plan to involve relevant personnel from the athletic department. In MDC, the school board’s Director of Athletics assisted with the planning and implementation as one of the critical task force members, her cooperation and support ensured feasibility and assistance with the school board approval. The UMCP worked directly with the schools and school board to improve the success of developing a standard program that could reach all athletes. In M¬DC Public Schools, each school has a certified athletic trainer (ATC) that works full-time at his/her school and is an employee of the School Board. The unique qualifications of ATCs made them the most appropriate person to collaborate with upon implementing the program in each school. The Director of Athletics for MDC public schools supported these efforts and began communication between UMCP and the ATCs. Even where certified athletic trainers are not readily available, athletic coaches or the school nurse were trained to implement the program. In March 2011 the ATCs and Coaches were provided with a comprehensive Concussion Management and Training Workshop by UMCP.

Finally, a plan was developed for funding and sustainability of the program. The first step was to review any existing funding mechanisms and potential new resources to support the implementation of a comprehensive management program. The plan included 1) staff/operations costs and baseline neurocognitive testing for all student athletes; and 2) implementing the centralized concussion care program as an investment in the safety of athletes that improves the prevention of concussions¬¬ by facilitating ongoing training and education which reduces liability when administered properly. However, in most public school systems budgets do not include a plan for concussion prevention/care, and funding can be difficult to find. The cost of operating such a program will vary depending on the size of the school district and the structure of the program. The process described (see Figure 2) demonstrates the development of an infrastructure for operation of the model. In MDC it was feasible for the UM Concussion Program under the KiDZ Neuroscience Center (KNC), which is a center devoted to improving the quality of care and advances in research and prevention of traumatic and acquired brain and spinal cord injury in children to partner with the MDC Public School Board. Additionally, since the MDC school board employs their own ATCs, training was provided for baseline neurocognitive testing of athletes playing contact sports and was added to their existing duties. In M¬DC, ImPACT™ (Immediate Post-Concussion Assessment and Cognitive Testing) is utilized because it is an evidence ¬based assessment that has been widely used and validated (Schatz et al., 2006). ImPACT™ is a 20-minute online computer exam consisting of five sections that assess memory, reaction time, non-verbal and verbal problem solving, and attention span. Baseline ImPACT™ scores are valid for four years for each athlete during their high school years, which reduces the annual cost of purchasing new exams. UMCP receives a charitable donation from a private high school annually that covers the price of purchasing baseline tests by volume for reduced pricing for all 36 public high schools in the county. The private schools buy their own licenses. The Director of the UMCP is also a Credentialed ImPACT™ Consultant with training that coordinates all the baseline testing. If an athlete sustains a concussion then they are retested by the ATC within 48-72 hours and the Director of the UMCP is notified and recommendations made and clinic visits scheduled.

Figure 2
Screen Shot 2014-03-07 at 9.08.59 AM

Execution
Once approval by the different agencies was granted, the execution phase of the MCM was initiated. The Countywide Concussion Care Protocol was developed to create a standard protocol for the concussion management of high school athletes (Figure 2). The first phase involved training and educating appropriate staff about concussions in sports and also how to administer baseline neurocognitive tests. The ATCs and school nurses were educated about concussion management and worked closely with an expert in concussion management to provide accurate information and to respond to questions. Prior to this program the Director of the UMCP taught a mandatory educational and training workshop for ATCs and Coaches that was expanded and continues. Other school professionals like nurses that may be involved in management of care for student athletes are trained annually on the concussion protocols as guidelines and recommendations change. In MDC, sideline assessment requirements include the Sports Concussion Assessment Tool 2 (SCAT2) and the King-Devick Test. The SCAT2 represents a standardized method of evaluating athletes aged 10 and older for concussion injuries through a series of cognitive questions and physical assessments (McCrory, 2009). The King-Devick Test is a rapid visual screening tool that is used to confirm suspected concussions, the athlete is asked to read numbers from the cards in sequence without errors as fast as possible. The athlete’s post-injury performance is compared to their pre-season baseline result (Galetta et al., 2011). Both of these assessments are utilized on the sidelines to verify suspected concussion symptoms and provide an objective confirmation of the injury. Protocols and guidelines are reviewed and updated annually to be consistent with national and state requirements and the latest medical research recommendations. During the pre¬-season training workshop by the UMCP, ATCs were trained on evaluating and administering baseline assessments to athletes. Two assessments require baseline results, ImPACT™ and the King-Devick test; athletes are tested prior to the start of contact drills to obtain accurate baseline results. In MDC, a list of testing guidelines was created for the school staff to reference throughout the year. After all athletes are tested, the ATCs, coach, or nurse contact the Director of the UMCP to verify that all baseline tests are valid before athletes are introduced to contact activities.

The MCM incorporates medical evaluation of the concussed athlete. UMCP works in conjunction with local physicians and other psychologists to assess the physical and neurocognitive consequences of the injury. The athletes receive comprehensive medical care, which is mandatory for clearance to play. UMCP provides a comprehensive concussion management program assessing the athlete’s medical, cognitive, and psychological well being during the recovery process. The pressure that athletes have to return to their pre¬-morbid academic and athletic levels can be overwhelming for an adolescent, particularly when their peers cannot understand the extent of their injury. The ImPACT™ neurocognitive computer test results coupled with a thorough clinical assessment aids the medical team in making an accurate prognosis and providing the athlete with confidence when returning to play. The UMCP medical team works directly with the ATCs to communicate the status of the athlete’s recovery.

Evaluation
When evaluating the model UMCP researchers examined individual school compliance as well as overall effect of program implementation on head injury rates in the county. The concussion protocol dictates that a school staff member will document the athlete’s immediate symptoms and details of the injury incident, which can be seen in Figure 2 (Evaluation). The ATC, coach, or nurse is to document each incident and keep accurate records, including: sideline assessment results from the Sports Concussion Assessment Tool 2 (SCAT2) or the King¬-Devick test (McCrory et al., 2008). Within 24¬-72 hours of the injury the athletic trainer, coach, or nurse would have administered a post¬-injury test to the injured athlete, reported the incident to the program coordinator and sought medical attention for the athlete.

Various methods to collect data can be utilized including tracking patients in local clinics and emergency departments, integrating an injury reporting system and continued follow-¬up with the school personnel. In MCM the records of concussion patients treated at UMCP are collected and an online concussion injury surveillance tool has been developed. The online injury¬ reporting form collects relevant details of the concussive incident including age, gender, sport, mechanism of injury, history of concussion, equipment that was worn at the time of injury, and geographical region within the county. It is necessary to collect accurate data surrounding each injury to better identify the specific issues occurring whether it is equipment failure, environmental, incorrect coaching, etc. The involved agencies collaborated to evaluate the effectiveness of the program after its implementation.
The Florida State Legislature passed House Bill 0291 in July of 2012 to ensure there are policies relating to the nature and risk of concussion and head injury in youth athletes requiring informed consent for participation in practice or competition and removal from practice or competition under certain circumstances, and written medical clearance to return. Pre-Legislation data from concussions reported in High School Sports based on age, sex, and ethnicity were obtained through the surveillance system. The pre-legislation results for all sports at 36 MDC High Schools for the 2010-2011 school year reported 32 concussions. For the following school year 2011-2012, still reported as pre-legislation, 40 concussions were reported. The most significant increase in reporting was for the school year 2012-2013, which was post-legislation data obtained after the passing of HB 0291 in July 2012. The 2012-2013 school year reported 166 concussions, a four-fold increase in concussion reporting. (Table 1)

Table 1. Surveillance Data
Concussion reporting for all sports in 36 Miami-Dade County Public High Schools
Screen Shot 2014-03-07 at 9.10.10 AM

The marked increase in reporting after the implementation of HB-0291 is attributed to increased awareness and the addition of a standard management protocol. The program has been successfully implemented in about 40 high schools (36 public and 4 private) in MDC. The MCM provided ImPACT™ baseline testing for 18,357 student-athletes, trained over 100 coaches and 40 athletic trainers, and most recently provided concussion education to high school football athletes. Data obtained from the UMCP clinic reports that in 2010, prior to the implementation of the standard protocol, 44 high school athletes from both public and private schools were treated for sports concussions during the fall athletic season (August-¬January). In 2011, post¬-implementation of the model, 61 athletes sought treatment for concussions. During the 2012 fall season and up to the present time, 155 ¬athletes were treated in the same clinic for a sports-¬related concussion, which included all sports for a total of 216 athletes treated. There are some athletes that return to their pediatricians or family doctors for their care and for clearance for return to play however the ATC at their school still follows the protocol and will enter data in the surveillance system. The chief complaints that athlete’s reported during clinic visits included; headaches, dizziness, fatigue, visual disturbance, and concentration issues. Most of these physiological symptoms were accompanied by cognitive deficits, which affected their academic performance. The clinic has developed a protocol for gradual return to play which includes exertion activities from low to high as tolerated and also return to class and academic work with specific accommodations. The University subjects’ review board approvals were obtained prior to collecting any data. The majority of the concussive injuries occurred in an MDC high school setting or at a school¬ sanctioned athletic event. In 2012, 198 high school concussion injuries were reported through a concussion injury surveillance system that the ATCs have been trained to use, 183 (92.4%) of those reported incidences occurred at a school or at a school sponsored athletic event.

DISCUSSION
The MCM presented here was implemented in MDC in 2011. From this pilot evaluation of the model it was determined to be effective in increasing the number of concussions identified, reported, and also treated at the UMCP clinic. Also a centralized standard protocol was now in place across the county allowing for better communication and compliance for reporting by the high school ATCs. This model, or a modified version, can be implemented to centralize concussion management in other counties and communities across the country. There is a unified need in every community for the development of concussion care protocol with the ever-increasing awareness and liability involved in high school sports.

CONCLUSION
Concussions affect all aspects of the student-¬athlete and therefore management of an injured athlete should be comprehensive and include psychological assessments, neurocognitive testing, academic support, and a physiological examination. A comprehensive program that combines education, baseline neurocognitive testing, clinical care and evaluation is believed to be most beneficial to maximize the effectiveness of such a program. The MCM outlined in this paper is designed to be a guideline that can be adapted to the needs of different communities. Data will continue to be collected and analyzed to evaluate the effectiveness of this program. With limited coordination and low cost for baseline testing it is important to have a concussion management program in place.

BARRIERS TO IPLEMENTATION
Since the MCM was developed with the consensus of key stakeholders, there has been little resistance. The model presented has recently been developed and is going through continual evaluation. While the preliminary data seems promising, we will continue to evaluate this model over the next few years. Since the identification of a concussive event relies on the reporting of injuries by the ATCs at each high school their support and implementation of the program is critical in the success of the program. The staff of the UMCP suspected that the number of concussive injuries was still under¬reported in the first year, however now with the passing of the Concussion Legislation in July 2012, reporting has increased. Also with continued training and education workshops and the centralized system this should improve compliance. Since MDC has ATCs that all work for the school board it is much easier to implement such a program. In other cases where the ATCs work for medical or rehab facilities they need to be compensated for their time in supervising and administering of the baseline ImPACT™ testing. If they are not able to participate a school nurse could be trained. Funding for the MCM will continue through a commitment made by the fundraising efforts of one private school in MDC, however there are other ways to budget for such a program; Parent¬ Teacher Association fundraisers, booster club events, corporate support, local sports teams sponsorship, or a nominal fee inclusive in yearly athletic dues.

APPLICATIONS IN SPORTS
The increased awareness of concussions and their effects on the developing brain have created a culture change in sports. Schools with athletic programs need to be encouraged to implement a system to correctly manage and prevent concussive injuries both to protect their athletes and to minimize liability. The development of the MCM and protocol with the support of the leadership of the School Board allowed for the high schools in MDC to take a proactive approach in improving concussion management for their athletes. The Baseline neurocognitive computerized testing ImPACT™ provided an objective measure that with the clinical exam assisted in determining a beneficial recovery plan for the athlete and providing a plan for the school to limit their liability while better caring for their student-¬athletes while identifying and preventing injuries.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Kaplan and the UHealth Sports Medicine Clinic and Staff, also Cheryl Golden, Director of Athletics for the Miami-Dade County School Board and all the Miami-Dade County Certified Athletic Trainers. We would also like to thank Ransom Everglades School, David Goldstein and the Goldstein Family for their initial and continued support of the UMCP.

REFERENCES

1. Centers for Disease Control. (2010). National Center for injury prevention & control: Traumatic brain injuries. Heads up: Concussions in high school sports. Retrieved from http://www.cdc.gov/concussion/sports/index. html

2. Coronado, V.G., Xu, L., Basavaraju, S.V., McGuire, L.C., Wald, M.M., Faul, M.D.,…Hemphill, J.D. (2011). Surveillance for traumatic brain injury-¬related deaths–¬¬United States, 1997¬-2007. Morbidity and Mortality Weekly Report Surveillance Summaries, 60(5), 1¬-32.

3. Daneshvar, D.H., Riley, D.O., Nowinski, C.J., McKee, A.C., Stern, R.A., & Cantu, R.C. (2011) Long¬term consequences: Effects on normal development profile after concussion. Physical Medicine and Rehabilitation Clinics of North America, 22(4), 683-700.

4. Galetta, K.M., Brandes, L.E., Maki, K., Dzuenuabwucz, M.S., Laudano, E., Allen, M.,…Balcer, L.J. (2011). The King¬-Devick test and sports related concussion: Study of a rapid visual screening tool in a collegiate cohort. Journal of Neurological Science, 309(1¬2), 34¬-39

5. Iverson, G.L., Brooks, B.L., Collins, M.W., & Lovell, M.R. (2006). Tracking neuropsychological recovery following concussion in sport. Brain Injury, 20(3), 245-¬252.

6. Leibson, C.L., Brown, A.W., Ransom, J.E., Diehl, N.N., Perkins, P.K., Mandrekar, J., & Malec, J.F. (2011). Incidence of traumatic brain injury across the full disease spectrum. Epidemiology. 22(6), 836-¬844.

7. Lovell, M., Collins, M., Iverson, G., Field, M., Maroon, J., Cantu, R., & Podell, K. (2003). Recovery from mild concussion in high school athletes. Journal of Neurosurgery, 98(2), 296-¬301.

8. McCrory, P. (2009). Sport concussion assessment tool 2. Scandinavian Journal of Medicine and Science in Sports, 19(3),452-452.

9. McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., & Cantu, R. (2009). Consensus statement on concussion in sport – the 3rd international conference on concussion in sport, held in Zurich, November 2008. Journal of Clinical Neuroscience, 16(6), 755-¬763.

10. McKee, A., Cantu, R., Nowinski, C., Hedley-Whyte, E.T., Gavett, B.E., Budson, A.E.,…Stern, R.A. (2009). Chronic traumatic encephalopathy in athletes: Progressive tauopathy following repetitive head injury. Journal Neuropathology and Experimental Neurology, 68(7), 709-735.

11. Miami-¬Dade Public Schools Research Services. (2011) Statistical Highlights, 2010-2011[Data File]. Retrieved from http://home.dadeschools.net/files/Statistical Highlights.pdf.

12. Nanda, A., Kahn, I.S., Goldman, R., & Testa, M. (2012). Sports Related Concussions and the Louisiana Youth Concussion Act. The Journal of the Louisiana State Medical Society, 164(5), 246-250

13. Schatz, P., Pardini, J.E., Lovell, M.R., Collins, M.W., & Podell, K. (2006). Sensitivity and specificity of the ImPACT Test battery for concussion in athletes. Archives of Clinical Neuropsychology, 21(1), 91-99.

14. Sleet, D.A., Hopkins, K.N., & Olson, S.J. (2003). From Delivery to Discovery: Injury Prevention at CDC. Health Promotion Practice, 4(2), 98-102.

15. Sports Legacy Institute. SLI Community Educators (2013). Retrieved from http://sportslegacy.org/education/slice.

2014-03-07T09:13:02-06:00March 7th, 2014|Contemporary Sports Issues, General, Sports Studies and Sports Psychology|Comments Off on A Countywide Program to Manage Concussions in High School Sports

The Impact of Hip Rotator Strength Training on Agility in Male High School Soccer Players

Submitted by Jesse Obed Nelson and Mark DeBeliso

ABSTRACT
The strength of the muscles surrounding a joint contributes to the stability of the joint. The stability of a joint provides the foundation for large muscle groups to perform high speed forceful actions. The purpose of this study was to examine if strengthening of the hip rotator muscles could improve measures of agility. Twenty-nine male high school soccer players were recruited to participate in a 9-week matched pair study. The control and the experimental group participated in regular weight training and soccer practice. Additionally, the experimental group performed three sets of the hip rotator exercises using latex chords (medial and lateral rotation) twice per week with both legs. The dependent variables were the T-Test, the Hexagon Test, and the 20-Yard Shuttle Run. All athletes were pre- and post-tested on each of the agility drills. A gain score was then calculated as the difference between pre- and post-test agility scores. An independent t-test was used to determine if there were any differences (p < 0.05) between the experimental and control groups. Statistical analysis showed no significant difference between the two groups for T-test (p=0.12), Hexagon test (p=0.35), and 20-yard shuttle run (p=0.18). The research hypothesis, which stated that adding hip strengthening exercises for the experimental group would produce faster times on the agility tests, was rejected. Possibly the volume of training, which often included three hours of exercise and practice per day, rendered the additional hip strengthening exercises insignificant. Repeating the experiment in the off-season with lower training volume might produce different results. INTRODUCTION
In sport and physical therapy there is not much time spent in training the medial and lateral rotators of the hip, while medial and lateral rotators of the arm (rotator cuff) are regularly exercised (15, 17). The deep inner muscles of the hip are often neglected and overlooked in the development of training programs for all types of sport.

Field sports which might benefit from strengthening of the hip rotators are those which require movements of agility (e.g. soccer, football, lacrosse, rugby, and basketball). Agility requires rapid change of direction. This is where stronger hip rotator muscles may help athletes. An increase in performance might be experienced as a result of stronger hip rotator muscles.

Injury rate reduction might also be a benefit of improving the strength of the hip rotator muscles. Sports that include running, dancing, and hockey are at increased risk of hip injuries (2, 7). Recent investigations suggest that 23% of athletes (e.g. divers, weightlifters, wrestlers, orienteers and ice-hockey players) have experienced a hip injury in the previous year (12). Muscle weakness is an intrinsic risk factor to joint injuries in sport (18). Strengthening of the hip rotator muscles is prehabilitative in nature, much the same as training the internal and external rotator cuff muscles (17). Prehabilitation is a concept where muscle groups are exposed to various exercise protocols with the hope of reducing the occurrence and severity of sport injuries (16, 17). A prehabilitative program for Rugby Union players identified the lower body including the hip as a specific target, however, isolated training of the hip rotator muscles was not included (16).

Internal and external hip rotator muscles include the adductor longus, adductor magnus, biceps femoris, gemellus inferior, gemellus superior, gluteus maximus, gluteus medius, gluteus minimus, gracillis, illiacus, obturator externus, obturator internus, piriformus, psoas, quadratus femoris, sartorius, semimembranosus, semitendinosus, and tensor fascia latae (11). There is a paucity of research examining the role of the hip rotator muscles in sport and prehabilitation. As such, this research effort focused on the impact of incorporating exercises that target the hip rotator muscles on sport-specific agility tests.

The research hypothesis is that, after training, the experimental group will show significant improvements versus the control group on the T-test, Hexagon test, and the 20-yd shuttle run. These tests are indicators of speed and agility (23), and are considered sport performance characteristics of the “best soccer” players (23). Hence, the purpose of adding the hip rotation exercises was to determine if there would be a positive influence on speed and agility. Conversely, the null hypothesis was that the addition of hip rotation exercises to the training program for the experimental group would not yield better performance on the agility drills than the control group.

If the research hypothesis is supported, coaches and athletes might incorporate hip rotator exercises to strength and conditioning regimens leading to improved agility. This research could also provide the foundation for future experiments regarding medial and lateral hip rotator muscles and the relation to sport performance.

METHODS
A convenience sample of male high school soccer players (n=29) was recruited to participate in a 9-week matched pair study. The participants were experienced in weight training, and trained and experienced at the competitive level in the sport of soccer. As such, participant fitness levels were likely above average for those of the same age and gender.

Age, weight, and height were recorded at the pretest. For the experimental group, the average age was 16.3±0.9 years with a range of 15-18 years. The average body mass was 68.1±9.9 kg, with a range of 57-89 kg. The average height was 173.3±8.9 cm, with a range of 165-193 cm. For the control group the average age was 16.6±0.7 years, with a range of 16-18 years. The average body mass was 66.3±8.7 kg, with a range of 54-86 kg. The average height was 173.0±7.7 cm, with a range of 163-188 cm.
Previous exercise history included calisthenics, stretching, running sprints, and weight training (all performed under the supervision of the strength and conditioning coach). The players also played a friendly game (against each other) two times per week before school. The participants were all varsity and junior varsity players, and most had played soccer since elementary school. No players were classified at the beginner level. All had been active and in good physical condition for years before the beginning of the experiment.

Human Subjects Approval was required and obtained. Informed Consent and Parental Consent was also required and obtained before subjects were allowed to participate in the study. Participants were allowed to withdraw at any time. The Informed Consent Document was approved by the University Institutional Review Board.
In order to conduct this study an experimental and control group were formed using a matched pair design (5). All of the participants performed the agility T-test, and then ranked from fastest to slowest. The first two highest scoring participants were matched and randomly assigned to either the experimental or control group. This process was repeated until the experimental (n=14) and control (n=15) groups were completed. This matched pair design assured that the two groups were essentially equal based on initial T-test scores.

Equipment for the strength and conditioning program was that traditionally found in many high school weight rooms. Iron plates were loaded onto weight bars for the squat, the deadlift, and other exercises. All of the athletes in both the experimental and control groups performed the same weight training exercises with the strength and conditioning coach. The training volume was the same for the experimental and control groups with the exception of the additional volume incurred by the experimental group as a result of performing the supplemental internal and external hip rotation exercises.

Weekly workouts during the intervention included 2-3 strength and conditioning sessions per week. The school had a rotating block class schedule, alternating successive weeks with two and three strength and conditioning classes respectively. The soccer team had practice for 1.5 hours every weekday after school unless there was a “friendly game” in the morning. All team members focused on stretching and recovery, but the experimental group still performed the hip rotator exercises.
Strength and conditioning sessions began in the wrestling room with calisthenics including bear crawls, planks, sit-ups, wall sits, push-ups, and some simple jumping drills. The team would then stretch with a focus on the legs. After stretching, half of the team would work with the track coach in the hall, while the other half would work with the strength and conditioning coach to the weight room. The group in the hall performed dynamic stretching and simple footwork drills such as butt-kicks, high knees, grapevines, 10 yard sprints, and skips. The group in the weight room did differing exercises depending on the day, mostly rotating with upper body, lower body, and total body exercises. The total body exercises included dot drills, deadlifts, hang cleans, and power cleans. The dot drills, hang cleans, and power cleans were exercises where members of both groups were encouraged to move as explosively as possible during the execution of the exercises while maintaining proper technique. Upper body exercises included the flat, incline, and decline bench press, push press, military press, dumbbell shoulder press, dumbbell row, dumbbell biceps curl, dumbbell triceps press, and pull-ups. Leg exercises started with the squat, and included leg extensions, leg curls, and calf raises. The protocol for all weight room exercises was three sets of 8-12 repetitions, and three sets of five repetitions on the total body exercises. Both groups performed the same baseline training regime with the experimental group augmenting the training with hip rotator exercises.

The experimental group completed the hip rotation exercises with the elastic chords during class time. The hip rotation exercises took 5-10 minutes to complete. The athletes began by doing three sets of 5-10 repetitions in each of the four directions (right leg internal and external rotation, left leg internal and external rotation). Each set was performed to exhaustion. The athletes gradually began to perform a greater number of repetitions per set as strength levels increased. Towards the end of the 9-week period, all of the athletes were completing three sets of 20-30 repetitions in each of the four directions.

Workout chords of latex bands were fastened to an inanimate object, such as a weight stack, or to the base of a handrail, with the opposite end looped around the ankle. The participants were seated on a chair with the hip and knee both at 90 degrees of flexion. The chairs used were high enough for the participant to find 90 degrees of flexion at the hip and at the knee. The participant then swung the foot inward or outward, depending on the position relative to the attachment site of the chord. The instruction was to hold the knee joint stationary at a 90-degree angle, and the hip joint at a 90-degree angle while swinging the foot inward. The speed of the movement was set at one second moving inward, followed by a one second return to the starting position for the internal hip rotation sets (with just the opposite for the external hip rotation sets). This was the speed of movement for both inner and outer directions. The movement speed was selected in order to strike a balance between improving the strength and stability of the joint, versus the possibility of injury to the hip rotator muscles from ballistically performing the limits of the range of motion with the hip and knee joints in fixed positions. Range of motion was considered and the players were encouraged to perform the movement “as far as possible, while avoiding any sharp pain”. The exercise movement patterns for the hip rotation exercises were consistent during the study.

Workout chords (UltrafitTM Lateral Toner -Heavy) were acquired through Gopher Sports, Owatonna, MN. The product is a 23 cm long latex chord attached to a 36 cm Velcro ankle wrap (17 kg elastic tension force rating). Similar resistance chords (elastic tubing) have been demonstrated to elicit similar EMG and indicators of muscle damage as that experienced with isotonic training equipment (1, 10). The chords allowed for near ideal positioning of the hip and knee angles in order to isolate the hip rotator muscles for medial and lateral rotation.

For the pre- and post-tests the “stopwatch” application was used on the iPhone (Apple, Inc.) to time the T-test, Hexagon test, and the 20-yard (65.6 m) shuttle run (also known as the pro-agility test). Handheld timing devices are considered acceptable for tests of speed and agility (23). The “notes” iPhone application was used to record the names, height, weight, and scores for each of the participants. Three scorers were used, one for each of the tests, each scorer having an iPhone. When the testing was completed, the scorers emailed the information directly to the researcher using the iPhone. This procedure protected the data against any type of hand transfer error, by keeping the scoring and transfer of data completely electronic. After the data was collected and emailed to the researcher, the other two scorers deleted all information. The same three scorers were used for both the pre-test and post-test, to ensure reliability (23). A meeting was held before each test battery (pre and post-tests). The researcher instructed the scorers how to correctly administer the tests. The researcher and the three scorers practiced setting up the tests and conducted trial runs with each other as a rehearsal.

Three scorers (including the researcher) set up the three agility drills. The reliability of the T-test (r=0.98) (19), the Hexagon test (“excellent reliability”) (6) and the 20-Yard Shuttle Run (r=.96) (21) have been previously reported. Exact procedures for these drills were obtained at http://www.topendsports.com. Participants were allowed one practice trial for each test. Following the practice trials, each test was repeated twice. All data was collected by the scorers and emailed directly to the researcher. The pre- and post-tests took place in the high school hallway. The post-tests took place the Monday following the last training session (72-96 hours).

The entire 9-week study was conducted during the soccer pre-season. Adherence to the program was monitored by the coach and the researcher by taking attendance. Absences were noted by the coach. Absences were rare, and there were no adherence problems.

After the 9 weeks were completed, the post-tests were administered in the same manner as the pre-tests. Scores were recorded in the same manner, using the same recorders. The data was then compared and analyzed, using Microsoft Excel ™. A gain score was calculated for each dependent variable that was equal to the difference between the post and pretest score. The gain score for each dependent variable was then compared between groups via an independent t-test with the significance level at < 0.05.. RESULTS
Two scores were collected at the pre-test and at the post-test for each dependent variable (T-Test, Hexagon Test, and 20-yard Shuttle Run). The “better” of the two scores was considered indicative of the maximum effort performance, and hence were used for analysis. Each dependent variable was measured in seconds.

T-Test
The experimental group scores were (mean±sd) pre=9.8±0.4, post=9.7±0.6, gain=-0.1±0.2. The control group scores were pre=10.0±0.6, post=9.7±0.4, gain=-0.3±0.2. The range of pre to post scores for both the experimental and control group compare favorably with and slightly faster than previously published T-Test scores for Elite U-16 soccer players (23). There was not a significant difference in gain scores between groups (p=0.12). Table 1 provides the details of the pre and posttest measures of the T-Test.

Table 1. T-Test Results
Screen Shot 2014-03-05 at 1.56.24 PM

Hexagon Test
The experimental group scores were (mean±sd) pre=12.1±1.2, post=10.9±1.1, gain=-1.2±1.2. The control group scores were pre=12.0±1.4, post=11.0±1.6, gain=-1.0±1.0. The range of pre to post scores for both the experimental and control group compare favorably with and slightly faster than previously published Hexagon test scores for male recreational college athletes (4). There was not a significant difference in gain scores between groups (p=0.35). Table 2 provides the details of the pre and post measures of the Hexagon Test.

Table 2. Hexagon Test Results
Screen Shot 2014-03-05 at 1.57.04 PM

20 Yard Shuttle Run
The experimental group scores were (mean±sd) pre=5.0±0.3, post=5.0±0.3, gain=0.0±0.4. The control group scores were pre=5.0±0.4, post=5.1±0.2, gain=0.1±0.3. The range of pre to post scores for both the experimental and control group compare favorably with and slightly slower than previously published 20 yard Shuttle Run Test scores for male NCAA Division III soccer athletes (23). There was not a significant difference in gain scores between groups (p=0.18). Table 3 provides the details of the pre and post measures of the 20-yard shuttle run.

Table 3. 20-Yard Shuttle Run Results
Screen Shot 2014-03-05 at 1.58.00 PM

The results from all three tests indicated that there was not a significant difference at the 0.05 level in performance between the experimental and the control group. The researchers failed to reject the null hypothesis. The addition of hip rotation exercises to the training program for the experimental group did not improve performance on the agility drills versus control.

DISCUSSION
Previous research exploring means to improve agility in soccer players has focused on strength training, plyometrics, plyometrics combined with strength training, stretching modalities, and acute exercise protocols (3, 8, 9, 13, 14, 20, 22). Plyometrics, strength training, and plyometrics combined with strength training have been demonstrated to improve performance on agility tests in soccer players (9, 14, 20, 22). However, studies regarding stretching modalities (PNF, static, dynamic) and acute exercise protocols are inconclusive with respect to improving performance on agility tests (3, 8, 13). There are no other published studies investigating training of the hip rotator muscles. This study was a pioneering research experiment to determine if strengthening hip rotator muscles using latex bands could lead to improved athletic performance on agility tests. The importance of this concept brings training of hip rotator muscles into sport performance. These hip rotational exercises could be readily added to a regular strength and conditioning program.

This study introduces the concept of training hip rotator muscles into practice. By using latex chords, soccer players were able to train hip rotator musculature. In retrospect some of the players expressed feeling a difference while doing these exercises over the weeks of time. After the posttests were completed, the elastic chords were given to the Coach. The general sense from the participants was that training the hip rotator muscles was beneficial and could make a positive difference. Hence, the team continued training the hip rotator muscles with the elastic chords following the conclusion of the study. One possible reason that improvements in agility were not observed with augmented training of the hip rotator muscles was due to the large overall volume of training for both groups. The experiment was performed during the preseason transition into the regular season where training volume is high.

The researchers were unable to establish a measurable benefit from the intervention. Possibly, relative effort was related to degree of gain. Those exhibiting the greatest effort during training (from either group) experienced the greatest improvements. Some subjects may have been more motivated to work hard and win a championship, particularly the older players. Possibly, some may have trained or performed harder when influenced by a friend. The level of motivation and social acceptance may relate to work ethic. Although the research hypothesis had to be rejected, hip rotation exercises may have value in strength training programs. There may be other training programs with hip rotation exercises in favor of the research hypothesis.

The preseason workload was formidable. The beneficial expression of hip rotator supplemental exercises was possibly limited due to the large volume of other weekly exercises. If the experiment is to be repeated, one might consider the off-season when many of the variables (including total workload) can be better controlled. For example, the team could weight-train for an hour, three times per week, without the limitations of a class period (summer break). Additionally, a specific time for the experimental group to do the hip rotation exercises could be scheduled after both groups have completed the common portions of the strength training protocols together. For example, half of the players could stay after the hour-long training session for an additional 5 to 10 minutes to perform the hip rotation exercises.

A criticism of this study might focus on the repetitions and intensity in the study protocol for the hip rotator exercises. Strength protocols require higher intensity resistance with fewer repetitions whereas endurance prescribes higher repetitions with lower resistance. Arguably, the wording of the title of the study could be changed to “endurance” or “prehabilitation”. There is a relationship between muscular strength and endurance, and the small rotator muscles of the hip were isolated and exposed to focused resistance training. Nerves command muscles to pull on bones to stabilize and generate movement about joints. In theory, the nerves and motor units commanding these actions should have become stronger in response to the resistance-training stimulus. Considering the lengths, origins, and insertions, these small muscles do not create enormous amounts of torque, however, these muscles do stabilize the joint socket. The larger muscles of the legs and core move the body. The concept is to improve the stability of the joint, in turn, allowing the larger muscles to have a more stable frame to pull on. Providing the larger muscles with a more stable frame should allow for the generation of faster, more powerful movements. Further, as with the rotator cuff muscles, resistance training with high intensity and lower repetitions could be potentially hazardous to the hip rotator muscles.

Both the experimental and control groups performed total body exercises including dot drills, hang cleans, and power cleans. The dot drills, hang cleans, and power cleans were exercises where members of both groups were encouraged to move as explosively and fast as possible during the execution of the exercises while maintaining proper technique. Conversely, the tempo of the execution of the hip rotator exercises was 1:1 (seconds), with one second moving inward, followed by a one second return to the starting position for the internal hip rotation sets (with just the opposite for the external hip rotation sets). The movement speed was selected in order to strike a balance between improving the strength and stability of the joint, versus the possibility of inducing an injury to the hip rotator muscles. Ballistic movements into the limits of the range of motion may affect short or long-term risk of injury while the hip and knee are in fixed positions.

The research hypothesis was that the speed of movement and power developed as a result of performing dot drills, hang cleans, and power cleans would be better exhibited by the experimental group due to the introduction of the hip rotator exercises. The addition of hip rotator exercises was hypothesized to develop speed and power to a greater degree while performing other exercises (dot drills, hang cleans, and power cleans). Future studies might focus on the tempo of performing the hip rotator exercises. From a specificity standpoint, hip rotator exercises may need to be performed at a faster pace in order to better transfer the speed and power developed for agility performance.

CONCLUSION
In conclusion, although the research hypothesis was rejected, hip rotation exercises may still prove to be a valuable part of a strength-training program. With additional sport-related studies, the importance of hip rotation exercises augmenting a training program may prove beneficial for the enhancement of sport agility performance. These exercises may help athletes to be stronger, more agile, and less prone to injury.

APPLICATION IN SPORT
Prehabilitation is a concept where muscle groups are exposed to various exercise protocols with the hope of reducing the occurrence and severity of sport injuries (10, 11). This study could be considered prehabilitative in nature. Isolated training of the hip rotator muscles may improve the strength of the exercised muscles and enhance the long-term stability of the hip joint. Joint laxity and muscle weakness are both intrinsic risk factors for joint injury (12). A possible benefit of this study was a subsequent reduction of hip joint injuries and severity. However, the study did not include a follow up period where injury occurrences were monitored.

ACKNOWLEDGMENTS
None

REFERENCES
1. Aboodarda, S., Georg, J., Mokhtar, A., & Thompson, M. (2011). Muscle strength and damage following two modes of variable resistance training. Journal of Sports Science & Medicine, 10(4), 635-642.

2. Adkins, S. B., & Figler, R. A. (2000). Hip pain in athletes. American Family Physician, 61, 2109-2118.

3. Amiri-Khorasani, M., Sahebozamani, M., Tabrizi, K. G., & Yusof, A. B. (2010). Acute effect of different stretching methods on Illinois agility test in soccer players. Journal of Strength & Conditioning Research, 24(10), 2698-2704.

4. Baechle, T. R., & Earle, R. W. (2008). Essentials of strength training and conditioning (3rd ed.). Champaign, IL: Human Kinetics.

5. Baumgartner, T. A, & Hensley, L. D. (2006). Conducting and reading research in health and human performance (4th ed.). New York, NY: McGraw-Hill.

6. Beekhuizen, K. S., Davis, M. D., Kobler, M. J., & Cheng, M. S. (2009). Test-retest reliability and minimal detectable change of the hexagon agility test. Journal of Strength & Conditioning Research, 23(7), 2167-2171.

7. Boyd, K. T., Peirce, N. S., & Batt, M. E. (1997). Common hip injuries in sport. Sports Medicine, 24, 273-288.

8. Bullock, W., Panchuk, D., Broatch, J., Christian, R., & Stepto, N. K. (2012). An integrative test of agility, speed and skill in soccer: Effects of exercise. Journal of Science & Medicine in Sport, 15(5), 431-436.

9. Christou, M., Smilios, I., Sotiropoulos, K., Volaklis, K., Pilianidis, T., & Tokmakidis, S. P. (2006). Effects of resistance training on the physical capacities of adolescent soccer players. Journal of Strength & Conditioning Research, 20(4), 783-791.

10. Due Jakobsen, M., Sundstrup, E., Andersen, C. H., Bandholm, T., Thorborg, K., Zebis, M. K., & Andersen, L. L. (2012). Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance. International Journal of Sports Physical Therapy, 7(6), 606-616.

11. Hamil, J., & Knutzen, K. M. (2009). Biomechanical basis of human movement (3rd ed.). Baltimore, MD: Lippincott Williams & Wilkins.

12. Jonasson, P., Halldin, K., Karlsson, J., Thoreson, O., Hvannberg, J., Swärd, L., & Baranto, A. (2011). Prevalence of joint-related pain in the extremities and spine in five groups of top athletes. Knee Surgery, Sports Traumatology, and Arthroscopy, 19(9), 1540-1546.

13. Jordan, J., Korgaokar, A. D., Farley, R. S., & Caputo, J. L. (2012). Acute effects of static and proprioceptive neuromuscular facilitation stretching on agility performance in elite youth soccer players. International Journal of Exercise Science, 5(2), 97-105.

14. Jullien, H., Bisch, C., Largouët, N., Manouvrier, C., Carling, C. J., & Amiard, V. (2008). Does a short period of lower limb strength training improve performance in field-based tests of running and agility in young professional soccer players? Journal of Strength & Conditioning Research, 22(2), 404-411.

15. Kibler, W. B. (2003). Rehabilitation of rotator cuff tendinopathy. Clinics in Sports Medicine, 22(4), 837-847.

16. Meir, R., Diesel, W., & Archer, E. (2007). Developing a prehabilitation program in a collision sport: A model developed within English premiership rugby union football. Strength & Conditioning Journal, 29(3), 50-62.

17. Mullen, G. (2010). How to prevent shoulder pain. Swimming World, 51(8), 30-31.

18. Parkkari, J. J, Kujala, U. M., & Kannus, P. P. (2001). Is it possible to prevent sports injuries? Review of controlled clinical trials and recommendations for future work. Sports Medicine, 31(14), 985-995.

19. Pauole, K. K., Madol, K. K., Garhammer, J. J., Lacourse, M. M, & Rozenek, R. (2000). Reliability and validity of the T-test as a measure of agility, leg power, and leg speed in college-aged men and women. Journal of Strength & Conditioning Research, 14(4), 443-450.

20. Ronnestad, B. R., Kvamme, N. H., Sunde, A., & Raastad, T. (2008). Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. Journal of Strength & Conditioning Research, 22(3), 773-780.

21. Thomas, C. C., Plowman, S. A., & Looney, M. A. (2002). Reliability and validity of the anaerobic speed test and the field anaerobic shuttle test for measuring anaerobic work capacity in soccer players. Measurement in Physical Education & Exercise Science, 6(3), 187-205.

22. Thomas, K., French, D., & Hayes, P. R. (2009). The effect of two plyometric training techniques on muscular power and agility in youth soccer players. Journal of Strength & Conditioning Research, 23(1), 332-335.

23. Triplett, N. T. (2012). Speed and agility. In T. Miller (Eds.), NSCA’s guide to tests and assessments (1st ed., pp. 253-274). Champaign, IL: Human Kinetics.

2014-03-05T14:03:28-06:00March 5th, 2014|Contemporary Sports Issues, General, Sports Exercise Science|Comments Off on The Impact of Hip Rotator Strength Training on Agility in Male High School Soccer Players

Leadership and Management Skills of Junior College Athletic Directors

Submitted by Timothy Baghurst, Earl Murray Jr., Chris Jayne and Danon Carter

ABSTRACT
The current and future funding condition for junior college (JC) athletics is unclear, and an athletic program’s budget and funding is usually the responsibility of the athletic director. The purpose of this qualitative phenomenological study was to explore the lived experiences and perceptions of junior college athletic directors to understand financial and leadership issues associated with athletic programs. Sixteen athletic directors (12 male, 4 female) from the same athletic conference in the state of California were interviewed and asked 17 open-ended questions about leadership and the financial issues associated with junior college athletic programs. Three primary themes emerged including leadership, roles and responsibilities, and an unexpected third theme of the student-athlete. Findings and their application to athletic director administration are discussed.

INTRODUCTION
College athletics have become big business, and a university athletic director (AD) plays an integral role in the success of the athletic programs. Colleges and universities at all levels require the managerial skills of an AD. Although leadership and administration of athletics is a frequent focus of research at the National Collegiate Athletics Association (NCAA) level, community college (hereto forth referred to as junior college; JC) programs have received little attention. For example, NCAA Division I athletic budgets may vary widely, but substantial budgets are common (14). Thus, application of findings at this level to JC athletic programs is difficult, as JC ADs may face more responsibilities in addition to fewer funding sources and athletic staff at their disposal. Therefore, the focus of this qualitative phenomenological study was to explore the lived experiences of JC ADs in order to determine how they use their leadership to overcome financial challenges experienced by their athletic programs.

Qualities of an AD
Robertson (2008) highlights several traits and skills necessary to be a successful AD. First, he or she must have the capability of creating an environment that helps all members of the program flourish, and all members of the athletic program must have the same goal in mind. Second, an AD must exhibit the ability to take risk, solve problems, think critically, and be a decision maker. Third, they must have the fiscal savvy to promote their university/college in a way that draws fan and community support thereby generating revenue. Thus, fiscal responsibilities of athletic programs are one of the most important challenges athletic administrators deal with at all levels (20).

JC Leadership Qualities
Nahavandi (2006) defined a leader as “any person who influences individuals and groups within an organization, helps them in the establishment of goals and guides them toward achievement of those goals, thereby allowing them to be effective” (p. 4). Another definition of leadership is “the capacity to influence others by unleashing their power and potential to impact the greater good” (4). Consistent with both definitions, leadership requires the ability to influence followers and guide them toward a goal.

Athletic directors are expected to display leadership skills in overseeing the day-to-day operations of the athletic department, but leadership is also necessary to manage the budget and financials of the program (13). There are several qualities of effective leadership as well as factors that impact the effectiveness of leadership. Effective leadership is defined by the effect on followers. Key traits of effective leaders as described by Kirkpatrick and Locke (1991) include drive, integrity, intelligence, motivation to lead, and knowledge of the business. Overall, leadership success is defined by the effectiveness of leaders to influence followers in every relevant aspect.

Junior college ADs must possess certain leadership qualities or characteristics to be successful. These characteristics include ethics or strong moral values, competence, self-confidence, and a desire to influence (28). Followers must trust the decisions and behaviors of ADs as well as believe in the direction being led. Leadership styles most attributed to ADs are transformational and situational leadership, as these styles incorporates change management, practicality, and flexibility as well as the success these leadership styles have on influencing others.

JC Athletic Finances
The funding for state colleges are being reduced across the country; and this is causing economic instability within many JC athletic programs (34). Junior college ADs are faced with difficult decisions when it comes to their athletic programs, which primarily revolve around the sustainability of the program. In many cases, there is outside pressure to add athletic teams to their program, while in others situations, ADs have to decide to keep a team or cut it from their program to save money (36). In 2009, Mississippi Governor Haley Barbour addressed the state’s JC ADs to explain that they needed to scale back the number of athletic teams that they offered, or the schools would have to drop athletics altogether (34).

Leadership is a key to any successful company, and sports administration is no different. However, how an AD may use his or her acquired leadership techniques to maintain and allow an athletic department to flourish under his or her guidance is unclear. This is particularly true at the JC level, where research is limited. Although there are similarities between the roles and responsibilities of ADs at JC compared with larger four-year universities, there are also differences. According to Lewis & Quarterman (2006), the three most important decisions and choices ADs make for managing and leading JC athletic programs are the enjoyment of athletics, the athletic environment, and a desire to learn more about the sports business. ADs from large universities have a greater focus on fiscal management where much of their time is focused on management, leadership, finance, marketing, ethics, legalities, and governance (2). This is not to say that JC ADs ignore ethical or legal issues, for example, but it is not considered their priority.

Although there are large financial deviations within NCAA Division I athletic programs, (14; 37), only a few operate profitably (10). Thus, the university is placed with a financial burden of justifying the existence of a program, and many DI ADs must turn to donors to gain the fiscal capital needed to balance their athletic budgets (35). For example, in the summer of 2012, facing a $4 million deficit, Maryland University decided to eliminate seven competitive athletic teams (17). Similarly, other prominent universities have taken drastic measures to ensure the survival of their athletic programs as a whole: University of California-Berkley had to cut five teams in 2010 and Rutgers University was forced to drop six competitive athletic teams in 2007 (3).

Unfortunately for ADs at the JC level, the financial situation is even bleaker. Most junior colleges lack the same opportunities. Fewer boosters are available and revenue generated at events is lower. Sustainability is a larger concern because of many educational cuts in state funding (Steinback, 2010). Success at the National Junior College Athletic Association (NJCAA) level does not always equal financial gain or even a program the next year. For example, in 2009 Minneapolis Community and Technical College lost only its second game of the year in the NJCAA DIII national championship game only to have the athletic department shut down completely shortly after. In order to continue to have an athletic program, some institutions have been required to cut the football program; although it is the biggest revenue provider, it is also the most expensive (34).

Study Purpose
The roles and responsibilities of an NCAA AD are well-documented, but less so are those of a JC AD, particularly as they pertain to leadership and financial skills. The current and future funding condition for JC athletics is unclear (6). A better understanding of the skills and qualities necessary for success could be vital as JCs search for their next AD. Therefore, the purpose of this study was to explore the perceived leadership and financial skills of 16 JC ADs to better understand how leadership and financial skills in athletic programs might contribute to success. The qualitative, phenomenological study consisted of semi-structured interviews and asked ADs not only what it was like to serve in that capacity, but also to explain, (1) the relationship between ADs’ perceptions about leadership and funding JC athletic programs, and (2) the relationship between ADs’ perceived leadership skills and financing JC athletic programs. It was intended that ADs explain in general how they perceive leadership and how it is relevant in managing programs. Then, participants were asked to detail their perceived leadership skills to manage programs effectively.

METHOD
Participants

Participants were 16 ADs (12 male, 4 female) from JCs in California who were purposefully selected because they were knowledgeable about athletic programs and financing (11). Participants’ experience ranged between 10 and 21 years (see Table 1). Currently employed ADs were used to provide real-time feedback as opposed to retroactive data.

Procedures
Following university IRB approval, 20 ADs currently employed at a JC within the same athletic conference were mailed a letter to request an interview. From the 20 requests, three participants returned the letter agreeing to participate. The remaining 17 participants were contacted by telephone from which a further 13 agreed to participate.

Prior to each interview participants were asked to sign a consent form. All face-to- face interviews lasted between 25 and 50 minutes and were conducted within a one-month period. The interviews were conducted at a neutral site of the participant’s choosing. A mini cassette recorder was used to record all interviews in their entirety. All interviews were manually transcribed by the researcher using audacity-recording software. Following transcription, each participant was sent his or her transcript to confirm its accuracy.

Instruments
In qualitative research, the researcher is the primary instrument by exploring the phenomenon under study (7). Open-ended questions navigate and focus descriptions of a particular experience through intuition and reflection of that experience. A phenomenological study requires the interviewer to achieve, or attempt to achieve, a state of epoche, the elimination of suppositions and placement of knowledge above every possible doubt (24). Thus, the primary researcher made every effort to suppress any predisposed opinions or presumptions during this study regarding the phenomenon. This allowed the researcher to grasp and freshly comprehend the participants’ experiences with the phenomenon (12).
A face-to-face interview technique with open-ended questions was the most appropriate data collection method as it allowed for some deviation while simultaneously ensuring consistent structure across interviews (12). The semi-structured, open-ended questioning interview process was designed to direct the participant toward his or her lived experiences (27).
NVivo9™ software, in accordance with the modified van Kaam data analysis method, was used to analyze interview transcripts, and identify common themes, and patterns (25). Furthermore, the software package provided a digital transcript of audio files, import, and coding of interview transcripts and aided the exploration of potential emerging themes using a step-by-step process.

Data Validity, Reliability, and Triangulation
Validity is how accurately the account represents participants’ realities of the phenomenon and their credibility (16). To establish the validity for this study, transcripts were shared with the participants to ensure that the data was accurate prior to analysis, which is an important dimension of good quality research (9). This allowed participant to edit, revise, or add information prior to data analysis, none of which did. If both validity and reliability are the goal of qualitative research, the use of triangulation to record the construction of reality is appropriate (18). Triangulation occurs when different data sources, methods of data collection, or types of data are evidence to support research data (12). In the present study, participants were sent interview transcripts and themes derived from the data to ensure its accuracy as a second data source as well as confirm thematic analysis.

Data Analysis
According to Bradley, Curry, and Devers (2007), there is no singular way to conduct qualitative data analysis, although there is general agreement that the process is ongoing. An important first step is to immerse and comprehend the meaning (5). A modification of the van Kaam method of analysis for phenomenological data, which occurs through a multi-step process, was employed in the present study (24). This method identifies common themes and patterns used by participants in a qualitative research study.

The first step requires data to be organized, transcribed, and coded. Organization of data is critical in qualitative research because of the large amount of information gathered during the study (12). The data was organized by material type: all interviews, all observations, and all documents. Finally, data was coded.

The next step in the modified van Kaam data analysis method requires participants’ statements to be categorized, clustered, coded, and labeled into groups (24). The common themes constituting the core elements of the lived experiences of the participants were most important. Coding is a process of making sense of the data, dividing the data into text or image segments, labeling the segments with codes, examining codes for overlap and redundancy, and collapsing these codes into broad themes (12).

RESULTS
The premise of this study was to develop an understanding about the leadership skills of ADs with a particular focus on financial expertise. A semi-structured interview process was used to develop an overall analysis of expert thinking. The analysis revealed three emerging themes: (a) leadership, (b) roles and responsibilities, and (c) student-athletes. Each theme is explained and then supported by participant quotes.

Theme One: Leadership
With respect to leadership, leadership skills, types, and supervision were considered important. Participants mentioned the skills to self-evaluate and feedback and how important it was to reflect on their own performances. Self-evaluation is necessary in addition to soliciting feedback from others who might be able to provide insight. Participant 1 said,

I think through and self-evaluate, and each year I am evaluated by the Vice President and President of the college. The evaluation process also includes coaches, the trainer, and the secretary to find out what I need to improve on and set some goals.

Participant 12 stated, “Understanding my leadership skills involves listening to feedback and asking questions about how I am doing. A good leader must be open to constructive criticism and be a good listener and respect others’ opinions.”

The leadership of ADs may also influence the success of programs. According to Participant 6,

I am a leader by example as a positive person. I am reasonable and approachable, and [I] motivate with pride. I am a leader who likes to inspire others to be better. I am successful if our programs are. I want my coaches and student-athletes to be successful. I want to get the most out of people and care about what they are doing as followers.

Furthermore, Participant 3 said that

As a transformational leader, I look at the goals and vision of the athletic department and what needs to be done for the long term. Each athletic program has different needs and I look at the short and long term goals.

Theme Two: Roles and Responsibilities
A JC AD has multiple roles and responsibilities, but balancing budgets, securing funding, and distributing it appropriately was mentioned frequently. This is supported by Participant 6 who stated that, “Overseeing the budgets is a big part of my job. We have so much money for each program. Every program has a different number of student-athletes, coaches, etc. Each budget is different.”

Athletic directors must be able to budget well for each program they oversee. This is a challenge, as they must find ways to generate revenue to keep the programs active. For example, Participant 7 referred to fundraising.

Fundraising is the best way. I do not know of a community college that does not
fundraise. Most institutions cannot provide things such as backpacks or gear. There are strict rules about what can be purchased with state or district dollars. When there is a shortfall of funds, we have to fundraise to support the programs.

Participant 16 found that securing the necessary budget for JC athletics is frequently a challenge.

Money is very tight for athletic programs at community colleges. As a staff, we must fundraise to keep the programs going. The coaches fundraise for their sport. Some fundraising activities may be charity golf tournaments, barbeques, or bake sales.

Although finances are just one component of the responsibilities of an AD, it is apparent that they are a significant concern. For example, according to Participant 14, “The budget consumes 70% of my time to ensure the programs are run effectively.”

The decisions about athletic programs are a major responsibility for ADs. Participants reported that Title IX Gender Equity was a concern when adding, removing, or maintaining a program. “Title IX gender equity and compliance is a big issue, and we have to evaluate our athletic programs when considering adding or dropping a program”, said Participant 9. Participant 15, who stated that decisions about programs were made in consideration of Title IX and gender equity, supported this. Thus, it becomes a balancing act of meeting guidelines or policies while simultaneously ensuring that there is a sufficient budget.

I try to keep all my athletic programs. I try to make sure they are maintained with enough dollars coming in to keep them going. Terminating a program is the last thing I try to do. If nothing else, adding a program is a good thing but that takes money.

(Participant 16)

In JC athletics, things can change quickly, an AD must make decisions concerning their coaching staff who are responsible for the student-athlete. Thus, a change in a staff member may directly impact the athletic program and the student-athletes. According to Participant 4,
In athletics, change happens often. I deal with change by telling my coaches about changes and we work together on making changes when the time comes. Some people resist change, but change is a reality in athletics.

It is important, therefore, for the AD to be cognizant of upcoming change, and keep the staff apprised of changes that might impact them.

My coaches must deal with change the most because they spend the most time with the student-athletes. I teach them about change, when change is going to take place, how it affect their programs, and help them with change. Some adapt to change well, and others do not. I work with them all.

(Participant 8)

Theme Three: Student-Athletes
Some ADs reported the additional responsibility of having to coach. Although an AD wants to win both as a coach and director, there is recognition of balancing athletic success with academic success. In fact, the ADs placed academics above athletics. According to Participant 16, “The student-athlete should manage time by first looking at their academic responsibilities first then sports.” This is further supported by other examples.

The balance is placing academics ahead of athletics. The student-athlete must be organized and set up time schedules. A balanced student-athlete focuses toward academics and although athletics is important, earning good grades is equally important.

(Participant 14)

Athletic directors recognize that academic success is a reflection on the future prospects of the student-athlete, but also on the JC. Transferring to a larger institution is important for many students.

A student-athlete who cares about moving on beyond a two year college will do a good job with balancing academics and athletics. Although the student-athlete can do well in a sport, the student must have a good grade point average to transfer.

(Participant 8)

Motivation plays a big role in the student-athlete performance athletically and academically. The ADs are tasked with working with coaches to assist with motivating athletes. Just as a coach is a mentor to an athlete, the AD must serve as a mentor to the coach. According to Participant 13, “The athletic director sets the stage for the coaches to motivate the student-athletes.”

I try to promote morale and motivation with my coaches who are the leaders for the student-athlete. The coaches are mentors who motivate and inspire the student-athlete to good. As the athletic director I train the coaches to engage the student-athlete.

(Participant 2)

Some student-athletes are less self-motivated than others and require external motivation to perform better in a sport or academics. The ability to prioritize athletics and completing coursework with passing grades can be a challenge, yet “Increasing his or her self-motivation in the classroom can lead to a successful student-athlete” (Participant 11). Participant 6 noted that athletics has a tendency to be placed ahead of academics.

The challenged student-athlete lacks self-motivation, direction, and the ability to manage their time. This type of student-athlete lacks the passion for being engaged academically to learn in the classroom. They place athletics ahead of academics, which may be why they have difficulties earning good grades in the classroom.

DISCUSSION
The purpose of this qualitative, phenomenological study was to explore ADs lived experiences and perceptions of leadership in JC athletic programs particularly in reference to finances. Interview analysis revealed three main themes of leadership, roles and responsibilities, and the student-athlete. Each theme is discussed in light of current research.

Theme One: Leadership
Athletic directors recognized the importance of leadership in influencing the behavior and actions of others. According to Smith (1997), “As leaders face greater uncertainties and changes, and compounded complexities, they strive for greater flexibility and agility” (p. 277). In the present study, ADs saw their role as leaders encompassing a variety of roles and responsibilities as evidenced in the second theme. What is most important with these varying roles and responsibilities is the opportunity to receive feedback on their performance and make the appropriate adjustments based on the feedback received. “Effective leaders learn that comprehensive systematic reviews and evaluations should include every type of resource, every competency and capacity, and every person and position that affects performance” (33). Thus, some participants acquired evaluations from superiors, such as the college president or those working for the participant such as coaches, and applied this feedback to improve their leadership styles and effectiveness. Overall, the feedback an AD receives is a measuring tool for effectiveness in their role.

Theme Two: Roles and Responsibilities
Balancing budgets and securing funding was a clear concern for the participants. Many participants indicated that they were responsible for preparing the budget. A participative budget process involves lower-level administrators and coaches who better understand the individual line items who are responsible for the athletic department’s budget than senior administrators. A top down budgeting process offers short-term budgets imposed by senior administrators more likely to be consistent with the strategic long-term goals and objectives of the athletic department (20). Thus, those ADs expected to complete budgets without the use of participative budget methodology may experience higher levels of stress (32). Participative budgeting is supported by Wickstrom (2006), as an authoritative style of leadership is not conducive to the work force of the modern era, and that to be a successful leader an AD has to be willing to listen to those they lead.

The present study further found that gender equity and the budgetary requirements that stem from Title IX was considered both a financial and leadership challenge. This is not surprising, as gender equity at JCs has been clearly documented (8). A balance needs to exist between athletic sports programs relative to women’s sports and Title IX laws (19). Some ADs are faced with the decision to cut sports programs (Steinback, 2010) and must be cognizant of their current Title IX standing so that there does not become an imbalance of participation opportunities. Thus, there remains work to be done in achieving a standard of gender equity that not only meets the intent of Title IX but fully affords the respect of dignity for female student-athletes (19). As two-year athletic programs consider new directions, the achievement of gender equity within two year athletic programs still needs to be addressed (19), which is recognized by the participants of the present study.
Theme Three: Student-Athletes
The relationship that ADs had with student-athletes was an unexpected finding. This may be in part because some ADs reported the additional responsibility of serving as a coach. The extra coaching duties may cause additional stressors because it limits the time they have to devote to the financial responsibilities of the profession (21). Participants recognized that they were responsible with the coaches for improving both student athletic and academic performance. Participants stressed the importance of academics over athletics, but this may be due to efforts by the administration to increase retention and graduation rates (29). Not only did ADs report high levels of interaction with student-athletes, they generally viewed it as part of their responsibility to motivate the student to achieve both in athletics and in the classroom. That ADs viewed this as a component of their leadership was unexpected, as this task is frequently the responsibility of a coach or even assistant (15).

Limitations and Future Research
Although the present study provides some interesting findings, they should be evaluated with respect to its limitations. First, this study was limited to current full-time ADs at JCs in the state of California, which may not translate to the experiences of ADs in other locations or athletic conferences. Second, only four participants were female. This is not uncommon (1), and future research should consider whether opinions and perceptions differ between genders. For example, impressions of Title IX may differ by gender (1), and Title IX challenges may differ between JCs and traditional four-year institutions. Third, the specific financial expertise of each participant was not assessed. Therefore, future research should consider whether financial education and training improves AD financial expertise and progress toward short, intermediate, and long term strategic goals. The recommendation may benefit both low-level and senior level administrators at the JC. In addition, future researchers should consider conducting a broader survey of the general background and experiences of ADs in JCs.

CONCLUSIONS
The success of collegiate athletic programs can depend upon the skills of their ADs (31). Thus, they must possess leadership skills across multiple disciplines. Because financial and budgetary concerns were most prevalent among the participants of the present study, future research needs to investigate the training being provided for ADs. The financing and budget process is vital in ensuring that athletic programs are successful, and an action plan is needed for current and future ADs to use as a model to understand the entire financial and budget process of funding athletics programs.

APPLICATIONS IN SPORT
Empirical research has focused primarily on the Division I AD. However, these findings suggest that JC ADs encounter a variety of challenges which have not been investigated. JC administrators need to consider the budgetary and fundraising background and expertise of applicants, which is a paramount responsibility of ADs in JC.

ACKNOWLEDGMENTS
None
REFERENCES
1. Anderson, D. J., Cheslock, J. J., & Ehrenberg, R. G. (2006). Gender equity in intercollegiate athletics: Determinants of Title IX compliance Journal of Higher Education, 77, 225-250.

2. Barr, C. A., Hums, M. A., & Masteralexis, L. P. (2009). Principles and practice of sport management (3rd ed.). Sudbury, MA: Jones and Bartlett.

3. Berkowitz, S. (2011, June 28). Rutgers athletic department needs fees, funds to stay afloat. USA Today. Retrieved from http://usatoday30.usatoday.com/sports/college/2011-06-28-rutgers-athletic-department-subsidies_n.htm

4. Blanchard, K. (2010). Leading at a higher level: Blanchard on leadership and creating high performing organizations. Upper Saddle River, NJ: BMC, Blanchard Management Corporation.

5. Bradley, E. H., Curry, L. A., & Devers, K. J. (2007). Qualitative data analysis for health services research: Developing taxonomy, themes, and theory. Health Services Research, 42, 1758-1772.

6. Byrd, L. A., & Williams, M. R. (2007). Expansion of community college athletic programs. Community College Enterprise, 13, 39-49.

7. Caldwell, L., Creswell, J., & Iwamoto, D. K. (2007). Feeling the beat: The meaning of rap music for ethnically diverse Midwestern college students: A phenomenological study. Adolescence, 42, 337-351.

8. Castaneda, C., Hardy, D. E., & Kastinas, S. G. (2008). Meeting the challenge of gender equity in community college athletics. New Directions for Community Colleges, 142, 93-105.

9. Cohen, D., J., & Crabtree, B. F. (2008). Evaluation criteria for qualitative research in health care: Controversies and recommendations. Animals of Family Medicine, 6, 331-339.

10. Cooper, C., & Weight, E. (2011). Investigating NCAA administrator values in NCAA Division I athletic departments. Journal of Issues in Intercollegiate Athletics, 4, 74-89.

11. Creswell, J. W. (1994). Research design: Qualitative and quantitative approaches (1st ed.). Thousand Oaks, CA: Sage Publications, Inc.

12. Creswell, J. W. (2005). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. (2nd ed.). Upper Saddle River, NJ: Pearson.

13. Davis, D. J. (2001). An analysis of the perceived leadership styles and levels of satisfaction of selected junior college athletic directors and head coaches. United States Sports Academy. Retrieved from Proquest, UMI Dissertations Publishing, 3026212.

14. Dunn, J. M. (2013). Should the playing field be leveled? Funding inequities among Division I athletic programs. Journal of Intercollegiate Sport, 6, 44-51.

15. Fitzgerald, M. P., Nelson, B., & Sagaria, M. D. (1994). Career patterns of athletic directors: Challenging the conventional wisdom. Journal of Sport Management, 8, 14-26.

16. Ferguson, L. (2004). External validity, generalizability, and knowledge utilization. Journal of Nursing Scholarship, 36, 16-22.

17. Giannotto, M. (2012, July 2). Maryland cuts seven sports on ‘sad day’ in College Park, Washington Post. Retrieved from http://articles.washingtonpost.com/2012-07-02/sports/35486395_1_athletic-programs-track-program-athletic-director-kevin-anderson

18. Golafshani, N. (2003). Understanding reliability and validity in qualitative research. Qualitative Report, 8, 597-607.

19. Hagedorn, L. S., & Horton D., Jr. (2009). Student athletes and athletics. New Directions for Community Colleges, 147, 1-91.

20. Hodge, F., & Tanlu, L. (2009). Finances and college athletics. New Directions for Institutional Research, 140, 7-18.

21. Judge, L. W., & Judge, I. L. (2009). Understanding the occupational stress of interscholastic athletic directors. ICHPER – SD Journal of Research in Health, Physical Education, Recreation, Sport & Dance, 4, 37-44.

22. Kirkpatrick, S. A., & Locke, E. A. (1991). Leadership: Do traits matter? Executive, 5, 48-60.

23. Lewis, B. A., & Quarterman, J. (2006). Why students return for a master’s degree in sport management. College Student Journal, 40, 717-728.

24. Moustakas, C. (1994). Phenomenological research methods. Thousand Oakes, CA: Sage Publications.

25. Mukamusoni, D. (2006). Distance learning program of teachers at Kigali institute of education: An expository study. International Review of Research in Open and Distance Learning, 3, 1-10.

26. Nahavandi, A. (2006). The art and science of leadership. Upper Saddle River, NJ: Pearson. Prentice Hall.

27. Nelson, B., & Rawlings, D. (2007). Its own reward: A phenomenological study of artistic creativity. Journal of Phenomenological Psychology, 38, 217-255.

28. Northouse, P. G. (2013). Leadership: Theory and practice. Thousand Oaks, CA: SAGE.

29. Ohlson, M., & Storch, J. (2009). Student services and student athletes in community colleges. New Directions for Community Colleges, 147, 75-84.

30. Robertson, J. E. (2008). Leadership, athletic directors and mental toughness. National Junior College Athletic Association Review, 60, 2-6.

31. Ruihley, B. J., & Fall, L. T. (2009). Assessment on and off the field: Examining athletic directors’ perceptions of public relations in college athletics. International Journal of Sport Communication, 2, 398-410.

32. Ryska, T. A. (2002). Leadership styles and occupational stress among college athletic directors: The moderating effect of program goals. Journal of Psychology, 136, 1-22.

33. Smith, A. W. (1997). Leadership is a living system: Learning leaders and organizations. Human Systems Management, 16, 277-284. Retrieved from ProQuest at http://search.proquest.ezproxy.apollolibrary.com/docview201129759?

34. Steinbach, P. (2010). Economic Storm. National Junior College Athletic Association Review, 62, 4-7.

35. Wickstrom, B. D. (2006). Message to ADs: Get to know donors. National Collegiate Athletic Association News, 43, 4-24.

36. Williams, M. R., Byrd, L., & Pennington, K. (2008). Intercollegiate athletics at the community college. Community College Journal of Research and Practice, 32, 453-461.

37. Zimbalist, A. (2013). Inequality in intercollegiate athletics: Origins, trends and policies. Journal of Intercollegiate Sport, 6, 5-24.

2014-03-06T15:54:25-06:00March 3rd, 2014|Contemporary Sports Issues, General, Sports Management, Sports Studies and Sports Psychology|Comments Off on Leadership and Management Skills of Junior College Athletic Directors

Factors Affecting Scoring in NFL Games and Beating the Over/Under Line

Submitted by C. Barry Pfitzner, Steven D. Lang and Tracy D. Rishel

ABSTRACT
In this paper we attempt to predict the total points scored in National Football League (NFL) games for the 2010-2011 season. Separate regression equations are identified for predicting points for the home and away teams in individual games based on information known prior to the games. The sum of the predictions for the home and away teams computed from the regression equations (updated weekly) are then compared to the over/under line on individual NFL games in a wagering experiment to determine if a successful betting strategy can be identified. All predictions in this paper are out-of-sample—meaning that all of the information necessary for the predictions was available before the games were played. Using this methodology, we find that several successful wagering strategies could have been applied to the 2010-2011 NFL season. We also estimate a single equation to predict the over/under line for individual games. That is, we test to see if the variables we have collected and formulated are important in predicting the betting line for NFL games. These results can be used by either bettors or bookmakers wanting to increase their odds of success in the gaming industry.

INTRODUCTION
Bookmakers set over/under lines for virtually all NFL games. Suppose the over/under line for total points in a particular game is 40. Suppose further that a gambler wagers with the bookmaker that the actual points scored in the game will exceed 40, that is, he bets the “over.” If the teams then score more than 40 points, the gambler wins the wager. If the teams score under 40 points, the gambler loses the bet. If the teams score exactly 40 points, the wager is tied and no money changes hands. The process works symmetrically for bets that the teams will score fewer than 40 points, or betting the “under.” The over/under line differs, of course, on individual games. Since losing bets pay a premium (often called the “vigorish,” “vig,” or “juice” and typically equal 10%), the bookmakers will profit as long the money bet on the “over” is approximately equal to the amount of money bet on the “under” (bookmakers also sometimes “take a position,” that is, they will welcome unbalanced bets from the public if the bookmaker has strong feelings regarding the outcome of the wager [see also the reference to Levitt’s work in the literature review]). It is widely known a gambler must win 52.4% of the wagers to be successful. That particular calculation can be established simply. Let Pw = the proportion of winning bets and (1 – Pw ) = the proportion of losing bets. The equation for breaking even on such bets where every winning wager nets $10 and each losing wager represents a loss of $11 is:
Pw ($10) = (1 – Pw ) ($11) , and solving for Pw
Pw = 11∕21 = .5238, or approximately 52.4%

This research attempts to identify methods of predicting the total points scored in a particular game based on information available prior to that game. The primary research question is whether or not these methods can then be utilized to formulate a successful gambling strategy for the over/under wager, with success requiring a winning percentage of at least 52.4%.

The remainder of this paper is organized as follows: in the next section we describe the efficient markets hypothesis as it applies to the NFL wagering market; we then offer a brief review of the literature; in the following section we describe the data and method; descriptive statistics and the main regression results are then presented; these are followed by the wagering simulations; we next discuss our investigation of the determinants of the over/under line; and finally offer our conclusions.

NFL Betting as a Test of the Efficient Markets Hypothesis
A number of important papers have treated wagering on NFL games as a test of the Efficient Market Hypothesis (EMH). This hypothesis has been widely studied in economics and finance, often with focus on either stock prices or foreign exchange markets. Because of the difficulties of capturing EMH conclusions given the complexities of those markets, some researchers have turned to the simpler betting markets, including sports (and the NFL), as a vehicle for such tests.

If the EMH holds, asset prices are formed on the basis of all information. If true, then the historical time series of such asset prices would not provide information that would allow investors to outperform the naïve strategy of buy-and-hold (see, for example, Vergin 2001). As applied to NFL betting, if the use of past performance information on NFL teams cannot generate a betting strategy that would exceed the 52.4% win criterion, the EMH hypothesis holds for this market. Thus, the thrust of much of the research on the NFL has taken the form of attempts to find winning betting strategies, that is, strategies that violate the weak form of the EMH.

A Brief Review of the Recent Literature
Nearly all of the extant literature on NFL betting uses the point “spread” as the wager of interest. The spread is the number of points by which one team (the favorite) is favored over the opponent (the underdog). Suppose team A is favored over team B by 7 points. A wager on team A is successful only if team A wins by more than 7 points (also known as “covering” the spread). Symmetrically, a wager on team B is successful only if team B loses by fewer than 7 points or, of course, team B wins or ties the game—in any of these cases, team B “covers.” Vergin (2001) and Gray and Gray (1997) are examples of research that focus on the spread.

Based on NFL games from 1976 to 1994, Gray and Gray (1997) find some evidence that the betting spread is not an unbiased predictor of the actual point spread on NFL games. They argue that the spread underestimates home team advantage, and overstates the favorite’s advantage. They further find that teams who have performed well against the spread in recent games are less likely to cover in the current game, and those teams that have performed poorly in recent games against the spread are more likely to cover in the current game. Further Gray and Gray find that teams with better season-long win percentages versus the spread (at a given point in the season) are more likely to beat the spread in the current game. In general, they conclude that bettors value current information too highly, and conversely place too little value on longer term performance. That conclusion is congruent with some stock market momentum/contrarian views on stock performance. Gray and Gray then use the information to generate probit regression models to predict the probability that a team will cover the spread. Gray and Gray find several strategies that would beat the 52.4% win percentage in out-of-sample experiments (along with some inconsistencies). They also point out that some of the advantages in wagering strategies tend to dissipate over time.

Vergin (2001), using data from the 1981-1995 seasons, considers 11 different betting strategies based on presumed bettor overreaction to the most recent performance and outstanding positive performance. He finds that bettors do indeed overreact to outstanding positive performance and recent information, but that bettors do not overreact to outstanding negative performance. Vergin suggests that bettors can use such information to their advantage in making wagers, but warns that the market and therefore this pattern may not hold for the future.

A paper by Paul and Weinbach (2002) is a departure from the analysis of the spread in NFL games. They (as do we in this paper) target the over/under wager, constructing simple betting rules in a search for profitable methods. These authors posit that rooting for high scores is more attractive than rooting for low scores. Ceteris paribus, then, bettors would be more likely to choose “over” bets. Paul and Weinbach show that from 1979-2000, the under bet won 51% of all games. When the over/under line was high (exceeded the mean), the under bet won with increasing frequency. For example, when the line exceeded 47.5 points, the under bet was successful in 58.7% of the games. This result can be interpreted as a violation of the EMH at least with respect to the over/under line.

Levitt (of Freakonomics fame) approaches the efficiency question from a different perspective. It is clear that if NFL bets are balanced, the bookmaker will profit by collecting $11 for each $10 paid out. As we suggested earlier, bookmakers at times take a “position” on unbalanced bets, on the assumption that the bookmaker knows more about a particular wager than the bettors. Levitt presents evidence that the spread on games is not set according to market efficiency. For example, using data from the 2001-2002 seasons, he shows that home underdogs beat the spread in 58% of the games, and twice as much was bet on the visiting favorites. Bookmakers did not “move the line” to balance these bets, thus increasing their profits as the visiting favorite failed to cover in 58% of the cases.

Dare and Holland (2004) re-specify work by Dare and MacDonald (1996) and Gray and Gray (1997) and find no evidence of the momentum effect suggested by Gray and Gray, and some, but less, evidence of the home underdog bias that has been consistently pointed out as a violation of the EMH. Dare and Holland ultimately conclude that the bias they find is too small to reject a null hypothesis of efficient markets, and also that the bias may be too small to exploit in a gambling framework.

Still more recently, Borghesi (2007) analyzes NFL spreads in terms of game day weather conditions. He finds that game day temperatures affect performance, especially for home teams playing in the coldest temperatures. These teams outperform expectations in part because the opponents were adversely acclimatized (for example, a warm weather team visiting a cold weather team). Borghesi shows this bias persists even after controlling for the home underdog advantage.

METHODS
We focus on the total points scored in NFL games and the corresponding over/under line for that game. With the objective of estimating regression equations for home and away team scoring, data were gathered for the 2010-11 season for the analysis. The variables include:
TP = total points scored for the home and visiting teams for each game played
PO = passing offense in yards per game
RO = rushing offense in yards per game
PD = passing defense in yards per game
RD = rushing defense in yards per game
GA = “give aways,” offensive turnovers per game
TA = “take aways,” defensive turnovers per game
D = a dummy variable equal to 1 if the game is played in a closed dome, 0 otherwise
PP = points scored by a given team in their prior game
L = the over/under betting line on the game

Match-ups Matter (we think)
The general regression format is based on the assumption that “match ups” are important in determining points scored in individual games. For example, if team “A” with the best passing offense is playing team “B” with the worst passing defense, ceteris paribus, team “A” would be expected to score many points. Similarly, a team with a very good rushing defense would be expected to allow relatively few points to a team with a poor rushing offense. In accord with this rationale, we formed the following variables:
PY = PO + PD = passing yards
RY = RO + RD = rushing yards

For example, suppose team “A” is averaging 325 yards (that’s high) per game in passing offense and is playing team “B” which is giving up 330 yards (also, of course, high) per game in passing defense. The total of 655 would predict many passing yards will be gained by team “A,” and likely many points will be scored by team “A.”

Similarly, we theorize that if a team’s offense that commits many turnovers plays a team whose defense causes many turnovers, points scored for the offensive team may be lower (and perhaps more points will be scored by the defensive team). For turnovers, we created variables similar to the passing and rushing yards in the previous paragraph:
TO = GA + TA, that is, turnovers = “give aways” for a given team plus “take aways” for the opposition team.
The dome variable will be a check to see if teams score more (or fewer) points if the game is played indoors.
The variable for points scored in the prior game (PP) is intended to check for streakiness in scoring. That is, if a team scores many (or few) points in a given game, are they likely to have a similar performance in the ensuing game?

We also test to ascertain whether or not scoring is contagious. That is, if a given team scores many (or few) points, is the other team likely to score many (or few) points as well? We test for this by two-stage least squares regressions in which the predicted points scored by each team serve as explanatory variables in the companion equation.

General Regression Equations
The general sets of regressions attempted are of the form:
Screen Shot 2014-02-14 at 4.10.13 PMwhere the subscripts h and v refer to the home and visiting teams respectively, and the i subscript indicates a particular game.

Equations such as 1 and 2 are estimated using data for weeks 5 through 17 of the 2010-11 season. We chose to wait until week five to begin the estimations so that statistics on offense, defense, turnovers, etc., are more reliable than would be the case for earlier weeks.

RESULTS AND DISCUSSION
Descriptive Statistics

Table I contains some summary statistics for the data set. Teams averaged approximately 223 yards passing per game (offense or defense, of course) for the season, and they averaged approximately 115 yards rushing. The statistics reported on the rushing and passing standard deviations without parentheses are for the offenses and the defensive standard deviations are (as you might guess) in parentheses. Interestingly, passing defense is less variable across teams than is passing offense (we hypothesize that teams must be more balanced on defense to keep other teams from exploiting an obvious defensive weakness, but teams may be relatively unbalanced offensively and still be successful [see the 2011 Packers, for example, who ranked near the top in passing offense and near the bottom in rushing defense]). Home teams scored approximately 23.2 points on average for the season and outscored the visitors by 1.7 points. Total points averaged 44.5 in 2010-2011 and the over/under line averaged 42.8 (the difference between these means is statistically significant at α < .10; the calculated value for the t-test of paired samples is approximately 1.92). Not surprisingly, the standard deviation was much smaller for the line than for total points. Table I: Summary Statistics
Screen Shot 2014-02-14 at 4.15.59 PM

Regression Results
Though equations 1 and 2 from above represent our theoretical foundation, we did not find empirical support for the dome effect, points scored in the prior game, or for turnovers in predicting points for either the home or away teams. Thus we do not report regressions with those variables included (such estimations are available from the authors upon request). Since our objective is to produce predictions based on variables (and their effects) that are known prior to the games, we updated the equations weekly and checked for effects for those excluded variables. We did not find convincing evidence that any of the excluded variables should be included in the predictive equations.

The dome effect in a previous paper (see Pfitzner, Lang, & Rishel, 2009) found that teams scored approximately 5.4 more points when the game was played in a closed dome stadium for the 2005-2006 season. However, for the 2010-2011 season, games played in domes averaged 45.4 points and games played outdoors averaged 44.3. That difference is not statistically significant; the t-test for independent samples yields a calculated value of 0.54. The dome effect may be idiosyncratic in that, in some seasons, the high scoring teams may happen to be those who play home games in domed stadiums.

The representative estimated equations (at the end of the 16th week) are given in Table II. For the home points equation, the passing yardage and the rushing yardage are significant at α < .01, and α < .05 levels, respectively. The equation explains a modest 4.2% ( ) of the variance in home points scored. On the other hand, the F-statistic indicates that the overall equation meets the test of significance at α < .01. The estimated coefficients for the variables have the anticipated signs. To interpret those coefficients, an additional 100 yards passing (recall that this is the sum of the home team’s passing offense and the visitor’s passing defense) implies approximately 4.3 additional points for the home team, whereas an additional 100 yards rushing implies approximately 4.2 additional points. Table II: Regression Results for Total Points Scored
Screen Shot 2014-02-14 at 4.16.04 PM_v2

The visiting team estimation yields a similar equation in terms of the overall fit. The explanatory variables are statistically significant—the passing yardage variable at α < .05, and the rushing yardage variable is significant at α < .01. The equation explains only 3.7% ( ) of the variance in visiting team points, and the F-statistic implies overall significance at α < .05. The coefficients perhaps suggest a more important role for rushing than for passing in scoring for the visiting team. If the coefficients are to be believed, an additional 100 yards passing yields approximately 2.8 points for the visiting team, and an additional 100 yards rushing is worth 6.7 points. The reader may find such low values to be of concern, but recognize that the variables for which we are attempting estimates are very difficult to predict and are subject to wide variation. As we show in a later section, the lines on the games are much easier to predict. The model is best judged by its prediction qualities—here based on wagering success. Other Hypotheses
Another hypothesis we wished to entertain is whether or not scoring is contagious. A priori, we surmised that points scored in given games for visiting and home teams would be positively related. In keeping with our earlier work, there is no evidence that such is the case. The estimated simple correlation coefficient between home team and visiting team points is -0.106, which is not statistically different from zero and “wrong” signed according to our intuition. Our initial thinking was that if team “A” scores and perhaps takes a lead, team “B” has greater incentive to score. An obvious complicating factor is that a given team may dominate time of possession, thus preventing the opposing team opportunities to score. We also experimented with two-stage least squares to test the hypotheses that scoring was contagious. In that formulation we developed a “predicted points” variable for the home team, entered that variable as an independent variable in the visiting team equation, and reversed the procedure for the home team equation. Neither of the predicted points variables were statistically significant. The variable was positively signed for the home team equation, and negatively signed for the away team equation.

As indicated above, we also find no evidence that teams are “streaky” with respect to points scored. In short, we find that points scored in the immediately prior week do not contribute to the explanation of points scored in the current week. That conclusion holds up for the regressions in section VI as well.
Finally, though turnovers clearly matter in who wins or loses, there is no evidence from our work that measuring teams’ turnovers per game prior to the current game aids in predicting points scored by the individual teams.

Wagering on the Over/Under Line
In this simulated wagering project we use the estimated equations to predict scores of the home and away teams for all of the games played over weeks 8 through week 17 (end of the regular season). The points predicted in this manner are then compared to the over/under line for each game. We then simulate betting strategies on those games.

Out-of-Sample Method
Since it is widely known that betting strategies that yield profitable results “in sample,” are often failures in “out-of-sample” simulations, we use a sequentially updating regression technique for each week of games. Suppose, for example, we are predicting points for week 8. We then estimate equations TPhi and TPvi with the data from weeks 5, 6, and 7, then “feed” those equations with the known data for each game through the end of week 7, generating predicted points for the visiting and home team for all individual games in week 8. The predicted points are then totaled and compared to the over/under line for each game. Next we add the data from week 8, re-estimate equations TPhi and TPvi, and make predictions for week 9. The same updating procedure is then used to generate predictions for weeks 10 through 17. This method ensures that our results are not tainted with in-sample bias.

Betting Strategies
We entertain three betting strategies for the predicted points versus the over/under line on the games. These strategies are:
1. Bet only games for which our predicted total points differ from the line by more than 7 points.
2. Bet only games for which our predicted total points differ from the line by more than 5 points.
3. Bet all games for which our predicted total points differ from the line by any amount—in our case, all games.

As stated previously, a betting strategy on such games must predict correctly at least 52.4% of the time to be successful. If a given method cannot beat this 52.4% criterion, as a betting strategy it is deemed to be a failure.

Table III contains a summary of the results for the three betting strategies. The first betting strategy yields only ten “plays” over weeks 6 to 17. That betting strategy would have produced five wins, and five losses. For this (very) small sample, this strategy is, of course, not profitable, with only a 50% winning percentage. The second strategy (a differential greater than 5 points) yields 39 plays and a record of 17-10-0—a winning percentage of 63%. Finally for every game played, the method produces a still profitable record of 97-78-5, with the winning percentage at 55.4%.

Table III: Results of Different Betting Strategies
Screen Shot 2014-02-14 at 4.16.09 PM

There is some consistency between these results and those we found for the 2005-2006 season. In that work we found that the “> 5 points” strategy produced a winning percentage of 60.5% based on 39 plays. Betting all games produced a winning percentage of 54%. Interestingly, the earlier research produced nine games with a greater than 10 point difference between the line and the predicted points whereas this work on 2010-2011 season produced only one play (which would have been a winning bet).

It is important to note that we make no adjustment for injuries, weather, and the like that would be considered by those who make other than simulated wagers. We offer these methods only as a guide, not as a final strategy.

Another Method of Predicting the Line and Total Points
Since we have collected and created variables that may be relevant to determining the betting line (and total points), in this section we investigate the relevancy of our variables in that context. For purposes of comparison, we estimate an equation for the over/under line and, separately, for the actual points scored. Further, we compare the results for the 2010-11 season with our results from prior research. These equations may be useful in confirming (or contradicting) the results of the previous sections, and may provide useful information applicable to wagering strategies.

The results of those regressions are contained in Table IV. We estimated regression equations for two seasons with the line as the dependent variable and all of the right-hand side variables (with the exception of turnovers) specified in equations 1 and 2. The estimations for the line are contained in the second column (2005-2006 season) and the fourth column (2010-2011 season). The estimations are remarkably similar. For the line for both seasons, every coefficient estimate is correctly signed and statistically significant at traditional levels of alpha, and for both equations. The line seems to be set on the assumption that teams are streaky (we conclude they are not), and the dome effect on the betting line seems to be a bit smaller in the most recent season.

Table IV: Regression Results for the Line and Total Points, 2005 and 2010 Seasons
Screen Shot 2014-02-14 at 4.16.22 PM

As a comparison, we also estimated (far less successfully) an equation for total points with the same set of explanatory variables with those results reported in columns three and five of Table IV. Perhaps the most striking result of these regressions is that the regressions for the line explain fully two-thirds of the variance in that dependent variable and the equations for the actual points explains less than 6% of the variance in total points for either season, with only four of the seven explanatory variables meeting the test for statistical significance at traditional levels for 2005-2006 and only three for 2010-2011. Interestingly, the dome effect for total points for the earlier season estimated 5 additional points scored in dome games, and the corresponding estimate for the 2010-11 season was zero, when controlling for other effects. Recall that for the 2005-2006 season, 5.4 points more were scored in games played in domes, and the corresponding difference was only one point for the 2010-2011 season.

In short, and to be expected, the line is much easier to predict than is actual points scored. That is, the outcome of the games and points scored therein are not easily predicted. It is tempting to say, “That’s why they play the games.” At least two further observations are in order. First, consider the coefficients for points scored in the previous game. Those variables matter as would be anticipated on an a priori basis in determining the line for the game. However, they seem to play an insignificant (statistical or practical) role determining the actual points scored. This particular result may be interpreted as bettors placing too much emphasis on recent information, as other authors have suggested.

Finally, it also seems clear that the effect of playing indoors has dissipated between the two seasons for which we report results in Table IV. As we have emphasized, this may be simply the effect of teams who play many games indoors having poorer scoring teams for any particular year.

CONCLUSIONS
The regression results in this paper identify promising estimating equations for points scored by the home and away teams in individual games based on information known prior to the games. In a regression framework, we apply the model to three simulated betting procedures for NFL games during weeks 6 through 17 of the 2010-2011 season. Betting strategies based on the differences between our predictions and the over/under line produced profitable results for either all games at any differential or those for which our predictions differed from the betting line by 5 or more points.

Based on our earlier results finding profitable wagering strategies for the 2005-2006 season, we (and others) questioned whether these results will hold up in other seasons. Based on the results presented here—so far, so good.

APPLICATIONS IN SPORT
Betting on sports, the NFL in particular, is a very popular pastime among sports (or gambling) enthusiasts and a very lucrative business for bookmakers in Las Vegas and elsewhere. This research was conducted to determine whether successful wagering strategies could be developed based on regression equations used to predict points for the home and away teams in individual games. The sum of the predictions for the home and away teams, updated weekly, were then compared to the over/under line on individual NFL games. Certain betting strategies were identified as successful, and could therefore be used by those wanting to improve their odds while enjoying and increasing their interest in America’s favorite sport.

ACKNOWLEDGMENTS
None

REFERENCES
1. Badarinathi, R., & Kochman, L. (2001). Football betting and the efficient market hypothesis. The American Economist, 40(2), 52-55.

2. Borghesi, R. (2007). The home team weather advantage and biases in the NFL betting market. Journal of Economics and Business, 59, 340-354.

3. Boulier, B. L., Steckler, H. O., & Amundson, S. (2006). Testing the efficiency of the National Football League betting market. Applied Economics, 38, 279-284.

4. Dare, W. H., & Holland, A. S. (2004). Efficiency in the NFL betting market: modifying and consolidating research methods. Applied Economics, 36, 9-15.

5. Dare, W. H., & MacDonald, S. S. (1996). A generalized model for testing home and favourite team advantage in point spread markets. Journal of Financial Economics, 40, 295-318.

6. Gray, P. K., & Gray, S. F. (1997). Testing market efficiency: Evidence from the NFL sports betting market. The Journal of Finance, LII(4), 1725-1737.

7. Levitt, S. D. (2002). How do markets function? An empirical analysis of gambling on the National Football League. National Bureau of Economic Research (Working Paper No. 9422).
8. Paul, R. J., & Weinbach, A. P. (2002). Market efficiency and a profitable betting rule: Evidence from totals on professional football. Journal of Sports Economics, 3, 256-263.

9. Pfitzner, C. B., Lang, S. D., & Rishel, T. D. (2009). The determinants of scoring in NFL games and beating the over/under ;ine. New York Economic Review, 40, 28-39.

10. Pfitzner, C. B., Lang, S. D., & Rishel, T. D. (2006). Can regression help to predict total points scored in NFL games? In A. Avery (Ed.), The 2006 Southeastern INFORMS Conference Proceedings (pp. 312-317). Myrtle Beach, SC: Southeastern INFORMS.

11. Vergin, R. C. (2001). Overreaction in the NFL point spread market. Applied Financial Economics, 11, 497-509.

2014-02-17T13:03:34-06:00February 14th, 2014|Contemporary Sports Issues, General, Sports Management, Sports Studies and Sports Psychology|Comments Off on Factors Affecting Scoring in NFL Games and Beating the Over/Under Line

Analysis of Didactic Approaches to Teaching Young Children to Swim

Submitted by Anja Pečaver, Maja Pungeršek, Mateja Videmšek, Damir Karpljuk, Jože Štihec and Maja Meško.

ABSTRACT
Purpose: The study deals with an analysis of teaching swimming to children aged between four and eleven.

Methods: The study involved swimming instructors, teachers and coaches from different swimming schools in Slovenia. Data were acquired for 90 providers of swimming courses. The data were then analysed using descriptive statistic methods. The hypotheses were verified using Pearson’s χ² test and the Mann-Whitney test. Statistical significance was established at a 5% risk level.

Results: It was established that the differences between some parts of the exercise unit in terms of the frequency of use of a didactic movement game were related to gender and the acquired professional title. The didactic tools most frequently used during the swimming classes include kickboards, floating noodles and pool dive toys.

Conslusion: Children become more enthusiastic about learning to swim if information communication technology and didactic devices are used; it is easier to motivate them and attract their attention.

Applications in Sports: Swimming teachers should more often use didactic flotation devices whitch will fullfil children’s interest for swimming.

INTRODUCTION
It is extremely important for children to engage in a sport activity. Already at an early age they should be offered a variety of motor activities so as to broaden their horizons (16). In recent times, the age limit at which a child is expected to swim and have good swimming knowledge has decreased considerably. These days we expect children to swim already at the start of primary school whereas in the past children developed this ability at the end of primary school (17). Many reasons speak in favour of teaching children to swim as early as possible, with one of them clearly being to protect them from drowning. This is one reason that the new physical education curriculum for primary schools (10) includes a compulsory 20-hour swimming course in the second or third grade (at the age of 7–9 years). According to British experts, the most appropriate time to learn to swim is the three-year period from the age of eight to eleven because the learning process is fast and relaxed, children are motivated and few pupils skip classes (6). Relying on the results of her study, Škafar Novak (18) states it is reasonable to teach swimming at two age levels, namely getting children accustomed to water in the first primary school grade (6–7 years) and teaching them to swim in the third primary school grade (8–9 years). Great progress in swimming “literacy” is seen already with the youngest generations who explore water and its environment. Today about 10% of babies at the age of six months and older (17) can swim. Moreover, an analysis of reports on the running of annual sport programmes in local communities reveals that 249 swimming courses were conducted in 2008 (186 in primary schools, 63 in kindergartens) involving a total of 8,972 children (9).

When learning to swim it is important that the programme underpinning the learning process is well structured and suitable for the specific age group and the previous knowledge of the learners, and that it is organised flawlessly (4, 14). Incorrect steps taken during a child’s first contact with water can considerably extend the process of learning to swim and result in a negative experience which could linger throughout their life (12, 19). We should be aware that children’s safety is crucial in all types of sport activities, and just as important as maintaining their positive attitude to sport. All of the above depend more or less on the teacher who must be acquainted with the various contents, methods and types of learning to be able to attain the set goals. Working with young age groups is particularly demanding as it requires special approaches, gradual work and reasonable planning of the entire training process.

When one thinks about water activities for children, images of joy, fun, pleasure and laughter come to mind. To maintain such positive feelings during exercise and also afterwards, the swimming instructor/teacher/coach must not only have good knowledge of swimming techniques and good demonstration skills but also master appropriate swimming teaching methods which, for young children, must be based on didactic play. Jurak and Kovač (6) emphasise that the number of lessons making up the swimming “literacy” campaign has been decreasing which is why the teacher must make the best of the time that is dedicated to learning swimming. This can be achieved by using a modern learning programme which also includes the use of an appropriate didactic movement game and a variety of didactic tools (12, 25).

Given the obstacles that commonly appear on the way to the set goal, swimming professionals must cope with different situations, some of which may be very stressful for both the learners and teachers alike. It is up to the teacher which method they will choose to solve the problems, and their choice depends on their education, work experience and mainly their gift for working with children. Kovač (10) established that children up to nine years of age are most often taught by professionals with the title “swimming instructor” who generally have 3 to 5 years of work experience. They use a variety of didactic tools in their work which is positively reflected in the high motivation of children and, consequently, the high percentage of children who have become completely accustomed to water by the end of the course.

The purpose of the study was to analyse the teaching of swimming to children aged between four and eleven. We aimed to establish which difficulties swimming instructors/teachers/coaches encounter in individual exercise units, to what extent they use different didactic tools and a didactic movement game. Another aim was to establish whether there were any statistically significant gender differences in terms of the selection of the group of learners, the frequency of use of a didactic movement game and the frequency of coping with problems related to the learner’s personality. Another aim was to establish any statistically significant differences in the frequency of use of a didactic movement game depending on the professional title acquired by the instructor/teacher/coach.

WORK METHODS
Study subjects

The study encompassed a sample of 90 professionals (71 swimming instructors, 16 swimming teachers and 3 swimming coaches) who conduct swimming courses in different places in Slovenia. The sample of subjects included 57.8% of women aged between 20 and 50 and 42.2% of men aged between 19 and 55 years. The survey questionnaires were handed out during a licensing seminar for swimming instructors.

Swimming aids
The study was underpinned by a survey questionnaire which was completed by instructors, teachers and coaches from different swimming schools in Slovenia. The survey questionnaire included 15 questions of which some were closed-ended while others involved a combination of open-ended and closed-ended questions. Absolute anonymity of the subjects was ensured.

Verification of the questionnaire’s reliability
Cronbach’s alpha is a coefficient of reliability or consistency. Its purpose is to establish how effectively a group of variables or items measures an individual one-dimensional latent composition. With a multidimensional structure the alpha coefficient is low (13).

The value of Cronbach’s alpha rises with an increase in the number of items in the questionnaire. When correlations between the items are low, the value of alpha is also low: the higher the correlation, the higher the alpha value. High correlations among the items prove that the latter are measuring the same basic problem or subject. In that case, we can conclude that their reliability is good, i.e. high. It has been assessed in theory that alpha values around 0.60 are still acceptable (13).

It was concluded that the questionnaire’s reliability is high ranging from 0.72 to a very high value of 0.816.

Procedure
The 90 swimming instructors, teachers and coaches who attended the licensing seminar for swimming instructors at the Faculty of Sport in Ljubljana received the survey questionnaires. The data were processed with the SPSS 19.0 (Statistical Package for the Social Sciences) software application. The Mann-Whitney test and Hi² test were conducted. Statistical significance was established at a 5% risk level.

Limitations of the study
The study was conducted among swimming teachers in Slovenian primary schools. The study is thus limited to Slovenia in geographical terms. It does not encompass any teachers of children with special needs and does not investigate the characteristics and problems of the didactical teaching of children with special needs.

RESULTS
The results of the survey questionnaire served as a basis for analysing the system of work in different swimming schools in Slovenia.

The analysis of work experience revealed that professionals with 3 to 4 years of experience (31.1%) were in the majority, followed by those with 1 to 2 years (26.6%) and those with 5 to 6 years (23.3%) of experience. The smallest share was that of professionals with 7 years of experience or more (18.9%).

More than three-quarters of the surveyed professionals attend expert seminars once every two years to refresh their previous knowledge and acquire new knowledge. This result was expected since most of the surveyed professionals hold the swimming instructor licence which must be ratified every two years by attending expert seminars. Ten percent of the subjects attend seminars once a year and 3.3% twice a year. Surprisingly, 11.1% of those surveyed answered that they never attend any seminars.

We were also interested in which children they would prefer to select for their group (Figure 1) and whether there were any statistically significant differences in terms of the professionals’ genders (Table 1).

Figure 1. Selection of a group depending on a professional’s gender
Screen Shot 2014-02-14 at 11.27.45 AM

Only 18.9% of the surveyed professionals answered that it was irrelevant which group they teach, whereas others chose a group based on the learners’ age and knowledge. The results show that women prefer to teach the youngest children who are not yet accustomed to water or are unfamiliar with the swimming techniques, whereas men prefer learners who are accustomed to water and can swim 25 metres or more using one of the swimming techniques (Figure 1).

Table 1. Selection of a group depending on a professional’s gender
Screen Shot 2014-02-14 at 11.06.14 AM

It can be asserted at a 5% risk level that there are statistically significant differences in the selection of a group in terms of the gender of the swimming instructor/teacher/coach (Table 1).

Given the importance of playing for the overall development of a child, the surveyed professionals were asked how frequently they used didactic movement games when teaching children to swim (Figure 2).

Figure 2. Use of a didactic game in the teaching of swimming
Screen Shot 2014-02-14 at 11.28.43 AM

Using a 5-point Likert scale (with 1 meaning never and 5 always) the surveyed professionals assessed that they use a didactic movement game most often when getting children accustomed to putting their head under water (4.19), followed by the preparatory part of the exercise unit (4.12) and getting children accustomed to seeing under water (4.09). These are followed by getting children accustomed to exhaling in water (3.96), while sliding and in the main part of the exercise (both 3.5). The professionals use a didactic movement game the least in the actual teaching of swimming techniques (3.07) (Figure 2).

We were interested in whether any statistically significant differences in the frequency of using a didactic movement game when teaching swimming depend on a professional’s gender (Table 2).

Table 2. Use of a didactic motor game in specific parts of the exercise unit, with different contents, depending on a professional’s gender
chart

It can be asserted at a 5% risk level that there are statistically significant differences in the frequency of use of a didactic movement game in the preparatory part of the exercise unit, when getting children accustomed to water resistance, putting their head under water, seeing under water and exhaling in water (Table 2). The female professionals use didactic movement games more frequently when teaching the abovementioned activities (Figure 2).

We were interested in whether any statistically significant differences in the frequency of use of a didactic movement game in the teaching of swimming depend on a teacher’s gender (Table 3).

Table 3. Use of a didactic movement game in the exercise unit depending on the acquired professional title
chart2

It can be asserted at a 5% risk level that there are statistically significant differences in getting children accustomed to water resistance, putting their head under water and exhaling in water (Table 3). The swimming professionals with lower titles (swimming instructors) more frequently use a didactic movement game in the abovementioned activities than the professionals who hold higher titles (swimming teachers).

Table 4. Use of a didactic movement game in specific parts of the exercise unit depending on the professional title
chart3

The frequency of the use of different didactic tools during the teaching process was also analysed (Figure 3).

Figure 3. Use of swimming aids
Screen Shot 2014-02-14 at 11.29.32 AM

Analysis of the results shows (Figure 3) that in swimming schools the three most frequently used didactic tools include a kickboard (4.24), a floating noodle (4.11) and pool dive toys (3.60). Of all the above mentioned swimming aids the professionals only occasionally use pull buoys, swim hats/floating toys and rings/frames and only rarely mats and slides, whereas swimming balls and swimming belts are almost never used.

We were interested in how the swimming instructors/teachers/coaches acquaint children with the rules that must be observed in the swimming pool (Figure 4).

Figure 4. The method of acquainting children with the rules
Screen Shot 2014-02-14 at 11.31.14 AM

The professionals most often employ the discussion method (85.6%). Less than 14% of the answers to this question fit into the categories: by setting an example, using a stimulation game, with picture materials and by using all of the methods mentioned (Figure 4).

The respondents were asked how they impart new swimming contents to children. They had to mark the listed learning methods from 1 to 5, with 1 meaning never and 5 always (Figure 5).

Figure 5. Method of imparting new contents
Screen Shot 2014-02-14 at 11.31.46 AM

Figure 5 shows that a personal demonstration in the water is the method professionals use in almost every exercise unit to impart new contents to children (4.64). Personal demonstration on land ranks second (4.5). The professionals often use the explanation and discussion methods (4.19 and 4.13, respectively). Sometimes they use metaphors, comparisons (e.g. leap like a dolphin) and conceptions (3.24). It is surprising that they almost never use picture materials and video recordings (1.37).

In the study, we enquired into the problems the instructors/teachers/coaches deal with during the pedagogical process (Figure 6).

Figure 6. The frequency of problems related to a child’s personality the professionals deal with
Screen Shot 2014-02-14 at 11.32.34 AM

Figure 6 shows that the professionals most frequently deal with fear (3.46) during swimming lessons. In terms of the frequency of occurrence, that is followed by motor abilities (3.19), stubbornness and audacity or mischief (3.13). Disobedience (2.99) is also in the middle of the range. The sixth place in terms of frequency is held by lack of persistence (2.62) and the penultimate one to apathy (2.46). The least frequent is aggressiveness (1.93).

We were also interested in whether any statistically significant differences in the frequency of dealing with problems related to a child’s personality depend on a professional’s gender (Table 5).

Table 5. Frequency of dealing with problems depending on a professional’s gender
Screen Shot 2014-02-14 at 11.26.07 AM

It can be asserted at a 5% risk level that there are no statistically significant differences in the frequency of dealing with problems related to a child’s personality that depend on a professional’s gender (Table 5).

A prerequisite for the high-quality implementation of swimming courses is a swimming facility which complies with basic health, safety and pedagogical standards. The surveyed professionals were asked how frequently they encounter poor working conditions (Figure 7).

Figure 7. Frequency of encountering poor working conditions
Screen Shot 2014-02-14 at 11.33.38 AM

Figure 7 shows that the surveyed professionals most often deal with cold water – it was graded with 2.37 points, which means they encounter it sometimes. The next two are excessive noise in the swimming pool (2.33) and not enough space for exercise (2.31). Only rarely do the professionals deal with a damaged area surrounding the pool (2.09), a lack of swimming aids (2.04), too shallow/deep water (1.91), too many learners in the group (1.77) and the last-ranking dirty water (1.61).

At the end the swimming instructors/teachers/coaches were asked to explain how they choose the method for resolving problems encountered during the pedagogical process (Figure 8).

Figure 8. Demonstration of the frequency of problem-solving methods
Screen Shot 2014-02-14 at 11.34.29 AM

The surveyed professionals most often choose the problem solving methods they became acquainted with during additional trainings such as seminars and courses; these methods were assessed with 3.60. Slightly fewer professionals use methods stemming from their own experience acquired during training sessions in clubs or sport societies (3.27). In third place is knowledge acquired in school and/or at a faculty (3.21). Professionals help themselves the least with the experience they have acquired in their home environment based on behavioural patterns in the family and the examples set by parents. This was assessed with 3.14.

DISCUSSION
Teaching young children to swim requires the use of methodical procedures, good knowledge of different games and the handling of swimming aids as well as a lot of patience, dedication and energy (14). The study established that women prefer to teach the youngest children, especially those who are not yet accustomed to water or are unfamiliar with the swimming techniques, whereas men prefer to teach children who are already accustomed to water and can swim 25 metres or more using one of the swimming techniques.

Emotional learning takes place as long as there is an emotional link with the subject of learning; when the link is broken, children become weary and they turn their attention to other things and no longer accept information. If the games are carefully chosen they will engage the child’s emotions sufficiently (2, 11, 21). The study shows that swimming professionals only occasionally use a didactic movement game in the actual teaching of swimming techniques. This is of great concern because it shows that swimming professionals are not aware that children, even when they are already accustomed to water, are still children whose basic desire, need and right is to play and to enjoy playing. The results show that professionals with lower titles (swimming instructors) and who are female use didactic games in some swimming course activities considerably more than men. Playfulness is the prerequisite for a game and should combine freedom, relaxedness and an absence of fear. We believe that too many instructors/teachers/coaches refuse to rediscover the child within themselves and to descend to the child’s level, or are incapable of doing this. In their analysis of skiing teaching methods for the youngest, Dobida and Videmšek (5) also established that didactic games were much too rarely used in practice and that their use declines with the increasing skiing knowledge of a child.

The use of appropriate didactic tools adds to the quality of the exercise, while also making it more lively (8). The analysis of the results shows that in swimming schools the three most frequently used didactic tools included kickboards, floating noodles and pool dive toys. In fact, these are very commonly used swimming aids and can be used to get a learner accustomed to water and to teach them the basics of the swimming technique. Of all the above mentioned aids, swimming professionals occasionally use pull buoys, swimming hats/floating toys and rings/frames and only rarely mats and slides, whereas swimming balls and swimming belts are almost never used. The abovementioned aids break the monotony of the exercise, enable the learner to gain some independence in the water and provide for diversity in the learning process, and so they are an important motivational tool for learners. It is important that the aids are suitable (made of safe materials), in vivid colours, of the appropriate size etc. (22). Sometimes, the use of didactic tools for teaching non-swimmers was limited solely to a kickboard and balls or, in many cases, there were no tools at all (6, 15). Today, swimming instructors/teachers/coaches have many didactic tools available that enable the transfer of information in the psychomotor cognitive process; they facilitate the demonstration of a specific movement as well as the transfer and acceptance of different pieces of information which influence the final knowledge of the swimming course participant. It is difficult to imagine any sport activity without appropriate tools. An exercise becomes dull and is difficult to implement, especially with the youngest children. Didactic tools should be selected based on the set goals and children’s level of development. The availability of tools most often depends on financial resources; however, with a little resourcefulness one can make tools by themselves or borrow them.

In all sport exercises specific rules and regulations apply that must be followed by those implementing activities and the learners. Also in a pool or a swimming facility one must observe the rules and, most importantly, respect oneself and other people. The purpose of the signs set up around pools and swimming facilities is to inform swimmers about the water depth, prohibitions and types of danger (14). Therefore, we were interested in studying how the swimming instructors/teachers/coaches acquaint children with the rules that must be observed in the swimming pool. The swimming professionals most often only employ the discussion method. Only a few professionals set their own example, use a stimulation game and picture materials even though these are the methods that attract a child’s attention the most.

The surveyed professionals were asked how they impart new swimming contents to children. The demonstration method plays a particularly important role in the implementation of a physical education process for the youngest. It allows children to obtain a clear idea of the movement they are expected to perform. The analysis of the answers to the abovementioned survey questions shows that the professionals are aware of the above, as personal demonstration in the water and personal demonstration on land were ranked first and second, respectively. The professionals often use the explanation and discussion methods. Learning strategies are quite rarely used, namely, comparisons, metaphors and conceptions functioning as cognitive aids in the process of learning new contents and systematically supporting cognitive processes related to knowledge and the acquiring of new knowledge (1, 23). Those who run swimming courses know too little about the learning strategies which help learners achieve the set goals faster and easier. The swimming professionals almost never use picture material and video recordings. Children become more enthusiastic about learning to swim if information communication technology is used; it is easier to motivate them and attract their attention.

As a group consists of children with different behavioural characteristics and peculiarities, many things can happen while teaching them to swim (11). We enquired about the problems instructors/teachers/coaches deal with during the pedagogical process. The surveyed professionals noted that the greatest burden is a child’s fear of water which is a consequence of their negative experience with water. This fear is often unintentionally created by parents and the heads of swimming courses if they incessantly warn children about the dangers of water. As expected, the second place was occupied by poorly developed motor abilities of children which represent a great problem of modern times. Namely, children spend most of their leisure time at home, watching TV or sitting in front of a computer. Fear and poor motor abilities are followed by stubbornness, audacity and disobedience. We established no statistically significant differences in the frequency of dealing with problems related to the child’s personality depending on a swimming professional’s gender. All of the abovementioned problems are a consequence of the fast pace of living since these days parents do not spend enough time with their children. The latter learn many things from TV shows and computer games. The last three places among all problems were taken by a lack of persistence, apathy and aggressiveness. In one of their studies, Štihec, Bežek, Videmšek, and Karpljuk (20) found that physical education teachers often have to cope with a lack of discipline, excessive boisterousness, a failure to follow instructions, unauthorised absences, pupils’ lack of motivation, potentially dangerous situations/activities for pupils etc. during their work which can lead to a conflict situation.

The prerequisite for the high-quality implementation of a swimming course is appropriate working conditions. The swimming facility must meet basic health, safety and pedagogical standards (3). The surveyed professionals were asked how frequently they encounter poor working conditions and they ranked contact with cold water at the top of the problem list. Therefore, it is very important that children do not stand still during the swimming course but perform different motor tasks all the time. The surveyed professionals also reported that excessive noise in the swimming pool and insufficient space for exercise were quite annoying. Only rarely do the professionals deal with a damaged area surrounding the pool, a lack of swimming aids, too shallow/deep water, too many learners in the group and dirty water.

If the swimming instructors/teachers/coaches encounter problems during the pedagogical process they most often choose problem-solving methods they have learned about during additional trainings such as seminars and courses. In second place is the method stemming from their own experience which was acquired during trainings in clubs or sport societies. This is followed by knowledge acquired at school or a faculty, whereas the method the instructors/teachers/coaches use the least is their experience they have acquired in their home environment (examples set by parents and other members of the family).

CONCLUSION
The swimming learning model has been developed in Slovenia for already 50 years. The Slovenian theoretical design and practical implementation have thus approached the models of some of the most developed European countries such as Sweden and the Netherlands (7). In slightly less than a decade, swimming knowledge in Slovenia has improved by almost 20% due to the systematic approach to individual levels of the teaching of swimming, monitoring of an individual’s progress after each level, the intertwining of compulsory and elective school programmes as well as the projects within the National Sport Programme, a number of systemic measures throughout all these years and public co-financing (9).

The quality of the teacher’s expert work primarily depends on their professional qualifications or knowledge, personality, abilities, creativity and authority (8, 24). When teaching the youngest, one should be aware that children are not just a miniature copy of adults but are specific learners with their own needs, requirements and last but not least desires. One has to be familiar with the different paths to the goal that must be adjusted to children. Therefore, when teaching these age categories swimming instructors/teachers/coaches must consider a child’s developmental characteristics, adjust the didactic approaches and include different didactic tools in the process. Finally, it is very important that learning to swim becomes a pleasant and interesting experience for the child, that it awakens positive feelings in them so that they will continue to engage in recreational swimming later in life.

APPLICATIONS IN SPORT
We have to be aware that a didactic game is a fundamental method of work and approach to working with children, but the study shows that swimming professionals only occasionally use a didactic movement game in the actual teaching of swimming techniques. Therefore didactic motor game is still underused in practice; its use decreasing with the increasing level of child’s swimming skills. Children need and right is to play and to enjoy playing, so swimming teachers should more often use didactic flotation devices.

ACKNOWLEDGMENTS
Authors agree that this research has non-financial conflicts or interest. This includes all monetary reimbursement, salary, stocks or shares in any company.

REFERENCES
1. Anderson, A. T. (2002). Manjkajoča misel: strategije poučevanja v športni vzgoji in vrhunskem športu [The missing thought: Teaching strategies in physical education and elite sport]. Ljubljana: Sport Teachers Association: Slovenian Sports Institute: Faculty of Sport.

2. Coakley, J. (2011). Youth sports what counts as “positive development”. Journal of Sport & Social Issues, 35(3), 306–324.

3. Coates, E., & Coates, A. (2007). Young children talking and drawing. International Journal of Early Years Education, 14(3), 221–241.

4. Dybinska, E., & Kaca, M. (2007). Self-assessment as a criterion of efficiency in learning and teaching swimming. Human Movement, 8(1), 39–45.

5. Dobida, M., & Videmšek, M. (2005). Analiza poučevanja alpskega smučanja najmlajših [Analysis of teaching of Alpine skiing to the youngest]. Šport, 53(4), 49–53.

6. Jurak, G., & Kovač, M. (2002). Izbor didaktičnih pripomočkov za učenje plavanja [Selection of didactic tools for teaching swimming]. Ljubljana: Ministry of Education and Sport, Sport Department.

7. Jurak, G., & Kovač, M. (2010). Izpeljava športne vzgoje: didaktični pojavi, športni programi in učno okolje [Implementation of physical education: Didactic phenomena, sport programmes and learning environment]. Ljubljana: Faculty of Sport, Centre for Lifelong Learning in Sport.

8. Kapus, V., Štrumbelj, B., Kapus, J., Jurak, G., Šajber, D., Vute, R., Bednarik, J., Šink, I., Kapus, M., & Čermak, V. (2002). Plavanje, učenje [Swimming, learning]. Ljubljana: Institute of Sport, Faculty of Sport, University of Ljubljana.

9. Kolar, E., Jurak, G., & Kovač, M. (2010). Analiza nacionalnega športa v Republiki Sloveniji 2000–2010 [Analysis of national sport in the Republic of Slovenia 2000–2010]. Ljubljana: Sports Federation for Children and Adolescents of Slovenia.

10. Kovač, K. (2011). Analiza tečajev plavanja mlajših otrok [Analysis of swimming courses for young children]. Graduation thesis, Ljubljana: University of Ljubljana, Faculty of Sport.

11. Light, L.R. (2010). Children’s social and personal development through sport: A case study of an Australian swimming club Sport & Social Issues, 34(4), 379–395.

12. Light, R., & Wallian, N. (2008). A Constructivist-Informed Approach to Teaching Swimming. Quest, 60(3), 387–404.

13. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill.

14. Pečaver, A. (2011). Analiza poučevanja plavanja mlajših otrok [Analysis of teaching young children to swim]. Graduation thesis, Ljubljana: Faculty of Sport.

15. Rajtmajer, D. (1994). Metodično-didaktični problemi edukacije otrok z vidika (ne)uporabe didaktičnih medijev [Methodical-didactical problems in children’s education in terms of the (non)use of didactic tools]. In Proceedings of the 1st Slovenian Consultation on Teaching of Swimming and Safety from Drowning (pp. 213–217). Ljubljana: Faculty of Sport, Institute of Sport.

16. Swanson, J., Raab, M., & Dunst, J.C. (2011). Strengthening family capacity to provide young children everyday natural learning opportunities. Journal of Early Childhood Research. 9(1), 66–80.

17. Šajber, D. (2006). Plavanje od rojstva do šole [Swimming from birth to school]. Radovljica: Didaktika.

18. Škafar Novak, U. (2007). Primerjava učinkovitosti učenja plavanja med 6-7- in 8-9-letniki [A comparison of swimming learning efficiency between 6–7 and 8–9 year old children]. Graduation thesis, Ljubljana: University of Ljubljana, Faculty of Sport.

19. Štemberger, V. (2005). Plavanje v prvem triletju devetletne osnovne šole [Swimming in the first triad of the nine-year primary school]. In Proceedings / 2nd Expert Consultation on Didactics in school and nature (pp. 166–170). Ljubljana: Center šolskih in obšolskih dejavnosti.

20. Štihec, J., Bežek, M., Videmšek, M., & Karpljuk, D. (2004). An analysis of how to solve conflicts of physical education classes. Gymnica, 34(1), 23–29.

21. Videmšek, M., & Pišot, R. (2007). Šport za najmlajše [Sport for the youngest]. Ljubljana: Faculty of Sport, Institute of Sport.

22. Videmšek, M., Štihec, J., & Karpljuk, D. (2008). Analysis of preschool physical education. Ljubljana: Faculty of Sport, Institute of Kinesiology.

23. Wallis, J., & Binney, J. (2010). Learning and teaching through swimming and water-based activities. In, The really useful physical education book: learning and teaching across the 7–14 age range. Stidder, G (Ed.). Taylor & Francis; pp. 104–118.

24. Wiesner, W. (2008). Swimming education – the area of interest and methodological basis. In Science in Swimming, Zatona, K, Jaszczak, M (Eds). Wroclaw; Wydawnictwo AWF; pp, 41–48.

25. Woodson, E. D., Timm, F. D., & Jones, D. (2011). Teaching kids about healthy lifestyles through stories and games: Partnering with public libraries to reach local children. Journal of Hospital Librarianship, 11(1), 59–69.

2014-02-14T11:39:43-06:00February 14th, 2014|Contemporary Sports Issues, General, Sports Exercise Science, Sports Studies and Sports Psychology|Comments Off on Analysis of Didactic Approaches to Teaching Young Children to Swim
Go to Top